

FRAUNHOFER-GESELLSCHAFT

ZERTIFIZIERUNGSHANDBUCH UND PRÜFUNGSORDNUNG

Personenzertifizierungen im Bereich Data Science (Normatives Dokument)

Revision 29

Gültig ab 20.05.2025

Fraunhofer-Personenzertifizierungsstelle Schloss Birlinghoven 53757 Sankt Augustin

ZERTIFIZIERUNGSHANDBUCH UND PRÜFUNGSORDNUNG

Personenzertifizierungen im Bereich Data Science

Dorothea Kugelmeier

Leiterin der Fraunhofer-Personenzertifizierungsstelle angesiedelt am

Fraunhofer-Institut für Angewandte Informationstechnik FIT Schloss Birlinghoven 53757 Sankt Augustin

Inhalt

1	VORWORT	9
2	ANWENDUNGSBEREICH	10
3	ALLGEMEINGÜLTIGE BEGRIFFE	12
4	VORGABEN FÜR DAS ZERTIFIZIERUNGSVERFAHREN	14
4.1	Ziel	
4.2	Antragstellung	
4.3	Prüfungsdurchführung	
4.3.1	Zusammenstellung und Bereitstellung der Prüfungsunterlagen und Beauftragung der Prüfungsbeauftragten	d 15
4.3.2		
4.3.2	Durchführung von schriftlichen Prüfungen (theoretisch und prakti	scn, 15
4.3.3	Durchführung mündlicher Prüfungen (theoretisch und praktisch)	
4.4	Prüfungsfragen und -aufgaben	16
4.5	Auswertung und Bewertung von Prüfungen	17
4.6	Zertifizierung	17
5	RECHTE UND PFLICHTEN (Stand Dezember 2023)	18
5.1	Bekanntmachung	
5.2	Rechte	
5.3	Pflichten	18
5.3.1	Gewissenhaftigkeit	18
5.3.2	Unabhängigkeit	19
5.3.3	Persönliche Aufgabenerfüllung	19
5.3.4	Zulässige Verwendung von Zertifikaten	19
5.3.5	Verwendung des Fraunhofer-Logos	20
5.3.6	Anzeigepflicht	20
5.3.7	Auskunftspflicht	20
5.4	Verstoß gegen die Pflichten als zertifikatstragende Person	20
ANLAG	E A: »CERTIFIED DATA SCIENTIST BASIC LEVEL«	21
A 1	Verweis auf andere Normen und Dokumente	21
A 2	Anforderungsprofil	21
A 2.1	Bestimmung des Anforderungsprofils	21
A 2.2	Zugangsvoraussetzungen	21
A 2.2.1	Vorbildungen	21
A 2.2.2	Zusätzliche Ausbildungen und praktische Tätigkeiten	22
A 2.2.3	Persönliche Voraussetzungen	22
A 2.3	Geforderte Kompetenzen (Lernziele)	23
ANLAG	E B: »CERTIFIED DATA SCIENTIST SPECIALIZED IN ASSURING SAFETY«	<
		32
B 1	Verweis auf andere Normen und Dokumente	32
B 2	Anforderungsprofil	32
B 2.1		32
B 2.2	Zugangsvoraussetzungen	33

B 2.2.1	Vorbildungen	
B 2.2.2	Zusätzliche Ausbildungen und praktische Anforderungen	
B 2.2.3	Persönliche Voraussetzungen	33
B 2.3	Geforderte Kompetenzen (Lernziele)	34
ANLAGE	C: »CERTIFIED DATA SCIENTIST SPECIALIZED IN BIG DATA ANALYT	
C 1	Verweis auf andere Normen und Dokumente	
C 2	Anforderungsprofil	
C 2.1	Bestimmung des Anforderungsprofils	39
C 2.2	Zugangsvoraussetzungen	40
C 2.2.1	Vorbildungen	
C 2.2.2	Zusätzliche Ausbildungen und praktische Tätigkeiten	
C 2.2.3	Persönliche Voraussetzungen	
C 2.3	Geforderte Kompetenzen (Lernziele)	41
C Z.IS	deforder to impetenzen (zemziele)	•
ANLAGE	D: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DATA ANALYTICS«	
D 1	Verweis auf andere Normen und Dokumente	
D 2	Anforderungsprofil	45
D 2.1	Bestimmung des Anforderungsprofils	45
D 2.2	Zugangsvoraussetzungen	45
D 2.2.1	Vorbildungen	
D 2.2.2	Zusätzliche Ausbildungen und praktische Tätigkeiten	
D 2.2.3	Persönliche Voraussetzungen	46
D 2.3	Geforderte Kompetenzen (Lernziele)	47
ANLAGE	E: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DATA MANAGEME	NT«
		51
E 1	Verweis auf andere Normen und Dokumente	51
E 2	Anforderungsprofil	51
E 2.1	Bestimmung des Anforderungsprofils	51
E 2.2	Zugangsvoraussetzungen	51
E 2.2.1	Vorbildungen	51
E 2.2.2	Zusätzliche Ausbildungen und praktische Tätigkeiten	52
E 2.2.3	Persönliche Voraussetzungen	52
E 2.3	Geforderte Kompetenzen (Lernziele)	53
ANI AGE	F: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DATA QUALITY AN	D
	DATA PREPROCESSING«	
F 1	Verweis auf andere Normen und Dokumente	
F 2	Anforderungsprofil	
F 2.1	Bestimmung des Anforderungsprofils	58
F 2.2	Zugangsvoraussetzungen	58
F 2.2.1	Vorbildungen	
F 2.2.2	Zusätzliche Ausbildungen und praktische Anforderungen	
F 2.2.3	Persönliche Voraussetzungen	
F 2.3	Geforderte Kompetenzen (Lernziele)	60
	G: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DEEP LEARNING &	e c
G 1	GENERATIVE AI « Verweis auf andere Normen und Dokumente	
G 2		
U Z	Anforderungsprofil	00

G 2.1	Bestimmung des Anforderungsprofils	66
G 2.2	Zugangsvoraussetzungen	66
G 2.2.1	Vorbildungen	
G 2.2.2	Zusätzliche Ausbildungen und praktische Anforderungen	67
G 2.2.3	Persönliche Voraussetzungen	67
G 2.3	Geforderte Kompetenzen (Lernziele)	68
ANLAGE	H: »CERTIFIED DATA SCIENTIST SPECIALIZED IN MACHINE DATA	
A	NALYTICS«	73
H 1	Verweis auf andere Normen und Dokumente	73
H 2	Anforderungsprofil	
H 2.1	Bestimmung des Anforderungsprofils	73
H 2.2	Zugangsvoraussetzungen	74
H 2.2.1	Vorbildungen	
H 2.2.2	Zusätzliche Ausbildungen und praktische Anforderungen	
H 2.2.3	Persönliche Voraussetzungen	
H 2.3	<u> </u>	75
11 2.3	deforderte Kompetenzen (Lernziele)	,,
ANLAGE	I: »CERTIFIED DATA SCIENTIST SPECIALIZED IN MACHINE LEARNING	3
C	DPERATIONS«	79
I 1	Verweis auf andere Normen und Dokumente	79
12	Anforderungsprofil	
12.1	Bestimmung des Anforderungsprofils	79
12.2	Zugangsvoraussetzungen	80
12.2.1	Vorbildungen	
12.2.2	Zusätzliche Ausbildungen und praktische Anforderungen	
1 2.2.2	Persönliche Voraussetzungen	
		81
I 2.3	Geforderte Kompetenzen (Lernziele)	01
ANLAGE	J: »CERTIFIED DATA SCIENTIST SPECIALIZED IN PROCESS MINING«.	85
J 1	Verweis auf andere Normen und Dokumente	85
J 2	Anforderungsprofil	
J 2.1	Bestimmung des Anforderungsprofils	85
J 2.2	<u> </u>	86
J 2.2.1	Vorbildungen	
J 2.2.2	Zusätzliche Ausbildungen und praktische Anforderungen	
J 2.2.3	Persönliche Voraussetzungen	
J 2.2.3	Geforderte Kompetenzen (Lernziele)	87
J 2.13	delorative Rompetenzen (Lennziele)	•
ANLAGE	K: »CERTIFIED DATA SCIENTIST SPECIALIZED IN PRODUCTION«	91
K 1	Verweis auf andere Normen und Dokumente	91
K 2	Anforderungsprofil	91
K 2.1	Bestimmung des Anforderungsprofils	91
K 2.2	Zugangsvoraussetzungen	92
K 2.2.1	Vorbildungen	
K 2.2.2	Zusätzliche Ausbildungen und praktische Anforderungen	
K 2.2.3	Persönliche Voraussetzungen	
K 2.3	Geforderte Kompetenzen (Lernziele)	93
	•	
	L: »CERTIFIED DATA SCIENTIST SPECIALIZED IN QUANTUM MACHIN	
L	EARNING«	
L 1	Verweis auf andere Normen und Dokumente	97

L 2	Anforderungsprofil	97
L 2.1	Bestimmung des Anforderungsprofils	97
L 2.2	Zugangsvoraussetzungen	97
L 2.2.1	Vorbildungen	97
L 2.2.2	Zusätzliche Ausbildungen und praktische Tätigkeiten	98
L 2.2.3	Persönliche Voraussetzungen	98
L 2.3	Geforderte Kompetenzen (Lernziele)	99
ANII AGE	M: »CERTIFIED DATA SCIENTIST SPECIALIZED IN EDGE AI«	107
M 1	Verweis auf andere Normen und Dokumente	
M 2	Anforderungsprofil	
M 2.1	Bestimmung des Anforderungsprofils	107
M 2.2	Zugangsvoraussetzungen	107
M 2.2.1	Vorbildungen	
M 2.2.2	Zusätzliche Ausbildungen und praktische Anforderungen	
M 2.2.3	Persönliche Voraussetzungen	
M 2.2.3	Geforderte Kompetenzen (Lernziele)	109
IVI 2.3	deforder te Kompetenzen (Lernziele)	103
ANLAGE	N: »CERTIFIED DATA SCIENTIST SPECIALIZED IN TRUSTWORTHY A	
N. 4	Variable and an Name of and Dalamanta	
N 1	Verweis auf andere Normen und Dokumente	
N 2	Anforderungsprofil	
N 2.1	Bestimmung des Anforderungsprofils	114
N 2.2	Zugangsvoraussetzungen	115
N 2.2.1	Vorbildungen	
N 2.2.2	Zusätzliche Ausbildungen und praktische Anforderungen	
N 2.2.3	Persönliche Voraussetzungen	
N 2.3	Geforderte Kompetenzen (Lernziele)	116
ANLAGE	O: »CERTIFIED DATA SCIENTIST ADVANCED LEVEL«	122
0 1	Verweis auf andere Normen und Dokumente	122
0 2	Anforderungsprofil	
0 2.1	Bestimmung des Anforderungsprofils	122
O 2.2	Zugangsvoraussetzungen	122
O 2.2.1	Vorbildungen	122
O 2.2.2	Zusätzliche Ausbildungen und praktische Tätigkeiten	
O 2.2.3	Persönliche Voraussetzungen	
O 2.3	Geforderte Kompetenzen (Lernziele)	124
A NII A C E	DCERTIFIED CENTOR DATA CCIENTIST	125
P 1	P: »CERTIFIED SENIOR DATA SCIENTIST«	
P I	Anforderungsprofil	
	Bestimmung des Anforderungsprofils	125 125
P 2.1		
P 2.2	Zugangsvoraussetzungen	125
P 2.2.1	Vorbildungen/Parashtirungan und prolitische	125
P 2.2.2	Zusätzliche Ausbildungen/Berechtigungen und praktische	427
0222	Tätigkeiten	
P 2.2.3	Persönliche Voraussetzungen	
P 2.3	Geforderte Kompetenzen (Lernziele)	128
ANLAGE	Q: »DATA SCIENTIST SPECIALIZED IN THE EU AI ACT«	129
Q 1	Verweis auf andere Normen und Dokumente	

Q 2	Anforderungsprofil	129
Q 2.1	Bestimmung des Anforderungsprofils	129
Q 2.2		129
Q 2.2.1	Vorbildungen	129
Q 2.2.2	Zusätzliche Ausbildungen/Berechtigungen und praktische	
	Tätigkeiten	130
Q 2.2.3	Persönliche Voraussetzungen	130
Q 2.3	Geforderte Kompetenzen (Lernziele)	131
ANLAGE	R: »VERTIEFUNGSBEREICHE (Level 0)«	136
RV 1 V	ertiefungsbereich: Cognitive Robotics	137
RV1 1	Verweis auf andere Normen und Dokumente	137
RV1 2	Anforderungsprofil	137
RV1 2.1	Bestimmung des Anforderungsprofils	137
RV1 2.2	• • • • • • • • • • • • • • • • • • • •	137
	Vorbildungen	137
	2 Zusätzliche Ausbildungen und praktische Anforderungen	
	Persönliche Voraussetzungen	
	_	138
	delorative Rompetenzem (zemziele)	.50
RV 2 V	ertiefungsbereich: Image and Video Understanding	141
	Verweis auf andere Normen und Dokumente	
	Anforderungsprofil	
	• ·	141
	<u> </u>	141
	Zugangsvoraussetzungen Vorbildungen	
	Z Zusätzliche Ausbildungen und praktische Anforderungen	
	Persönliche Voraussetzungen	
	•	141
NV2 2.3	deforderte Kompetenzen (Lernziele)	142
RV 3 V	ertiefungsbereich: Cognitive Cyber Security	147
	Verweis auf andere Normen und Dokumente	
	Anforderungsprofil	
	• ·	147
	<u> </u>	147
RV3 2.2	- J. J	
	Vorbildungen	
	2 Zusätzliche Ausbildungen und praktische Anforderungen	
	Persönliche Voraussetzungen	
KV3 2.3	Geforderte Kompetenzen (Lernziele)	148
RV 4 V	Vantiafungshavaish. Chalianhava Langsvatana	151
	ertiefungsbereich: Skalierbare LernsystemeVerweis auf andere Normen und Dokumente	
	Anforderungsprofil	
	3	151
		151
	Vorbildungen	
	2 Zusätzliche Ausbildungen und praktische Anforderungen	
	Persönliche Voraussetzungen	
RV4 2.3	Geforderte Kompetenzen (Lernziele)	152
RV 5 V	ertiefungsbereich: Textmining & Large Language Models	154

RV5 1 Verweis auf andere Normen und Dokumente	154
RV5 2 Anforderungsprofil	154
RV5 2.1 Bestimmung des Anforderungsprofils	154
RV5 2.2 Zugangsvoraussetzungen	154
RV5 2.2.1 Vorbildungen	154
RV5 2.2.2 Zusätzliche Ausbildungen und praktische Anforderungen	154
RV5 2.2.3 Persönliche Voraussetzungen	154
RV3 2.3 Geforderte Kompetenzen (Lernziele)	155
RV 6 Vertiefungsbereich: Time Series Analysis	
RV6 1 Verweis auf andere Normen und Dokumente	158
RV6 2 Anforderungsprofil	158
RV6 2.1 Bestimmung des Anforderungsprofils	158
··· ·	158
RV6 2.2.1 Vorbildungen	158
RV6 2.2.2 Zusätzliche Ausbildungen und praktische Anforderungen	158
RV6 2.2.3 Persönliche Voraussetzungen	158
RV3 2.3 Geforderte Kompetenzen (Lernziele)	159

1 VORWORT VORWORT

Im Folgenden wird das Verfahren für Personenzertifizierungen im Bereich »Data Science« in Anlehnung an die Vorgaben der EN ISO 17024 »Allgemeine Kriterien für Stellen, die Personen zertifizieren« beschrieben und damit ein einheitliches Zertifizierungssystem vorgegeben. Gleichzeitig dient dieses Zertifizierungshandbuch als Prüfungsordnung.

2 ANWENDUNGSBEREICH

Der Anwendungsbereich des vorliegenden Zertifizierungshandbuchs erstreckt sich auf die Personenzertifizierungen im Bereich »Data Science« durch die Fraunhofer-Personenzertifizierungsstelle.

Die Personenzertifizierungen im Bereich »Data Science« beziehen sich auf folgende Zertifizierungsprofile:

- Level 1 (Basic Level):
 - Certified Data Scientist Basic Level
 - Certified Data Scientist Specialized in »Name der Spezialisierung«
- Level 2 (Advanced Level): Certified Data Scientist Advanced Level
- Level 3 (Senior Level): Certified Senior Data Scientist

Die verschiedenen Zertifizierungsprofile bauen wie folgt aufeinander auf:

Auf Level 1 (Basic Level) werden der Titel »Certified Data Scientist Basic Level« vergeben sowie Zertifikate in Spezialgebieten mit dem Titel »Certified Data Scientist Specialized in »Name der Spezialisierung««.

Das Zertifikat »Certified Data Scientist Basic Level« in Kombination mit einem der Zertifikate zum »Certified Data Scientist Specialized in »Name der Spezialisierung«« beinhaltet eine grundlegende Qualifikation in den wesentlichen inhaltlichen und methodischen Aspekten des Fachgebiets. Die Reihenfolge des Erwerbs der Zertifikate ist frei wählbar und es können beliebig viele Zertifikate auf dem Basic Level erworben werden. Die Zugangsvoraussetzungen richten sich nach dem jeweiligen Spezialgebiet (siehe Anlagen).

Level 2 (Advanced Level), wird mit dem Titel »Certified Data Scientist Advanced Level« abgeschlossen und beinhaltet die Anwendung von Methoden aus dem Bereich Data Science im Arbeitsalltag. Das Zertifikat wird vergeben, wenn

folgende Zertifikate nachgewiesen werden können:

- Entweder das Zertifikat »Certified Data Scientist Basic Level« plus eines der Zertifikate zum »Certified Data Scientist Specialized in »Name der Spezialisierung« vorliegen,
- oder drei Zertifikate zum »Certified Data Scientist Specialized in »Name der Spezialisierung«.
- oder das Zertifikat »Certified Data Scientist Basic Level« plus zwei vom Fachausschuss Data Science- anerkannte Mikro-Zertifikate,
- oder zwei Zertifikate »Certified Data Scientist Specialized in »Name der Spezialisierung« plus zwei vom Fachausschuss Data Science anerkannte Mikro-Zertifikate

und

- eine mindestens einjährige Berufserfahrung mit der Durchführung von Data Science Projekten **und**
- die Beschreibung der durchgeführten Tätigkeiten in einem mindestens zweimonatigen Data Science Projekt.

Auf Level 3 (Senior Level) wird der Titel »Certified Senior Data Scientist« vergeben, wenn neben mehrjähriger Berufserfahrung, das Zertifikat »Certified Data Scientist Advanced Level« nachgewiesen werden kann und eine Studienarbeit angefertigt

wurde. Nachfolgende Abbildung stellt die Zusammenhänge zwischen den einzelnen Zertifizierungsprofilen dar.

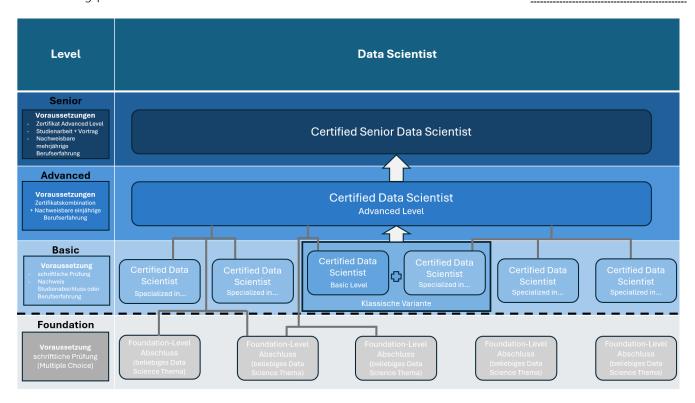


Abbildung 1: Zusammenhänge zwischen den Personenzertifizierungen im Bereich Data Science

Die Anforderungen der konkreten Zertifizierungsprofile sind in den Anlagen des vorliegenden Dokuments aufgeführt und sind Bestandteil der jeweiligen Personenzertifizierung.

3 ALLGEMEINGÜLTIGE BEGRIFFE

■ Fraunhofer-Personenzertifizierungsstelle

Stelle in der Fraunhofer-Gesellschaft, die Zertifizierungen der Konformität von normativen Vorgaben und der tatsächlichen Personenqualifikation durchführt.

■ Prüfungsbeauftragte (PB)

Fachkräfte, die im Auftrag der Fraunhofer-Personenzertifizierungsstelle tätig werden, um Personen zu prüfen. Sie sind in der Wahrnehmung ihrer Prüfungsaufgaben fachlich unabhängig. Es ist sichergestellt, dass die Prüfungsbeauftragten die vollständigen Ausbildungsinhalte kennen.

■ Prüfungsbeisitzer (PBei)

Personen, die im Auftrag der Fraunhofer-Personenzertifizierungsstelle tätig werden, um die Prüfungsbeauftragten bei der Abnahme von Prüfungen zu unterstützen. Sie sind den Prüfungsbeauftragten fachlich unterstellt.

■ Fachausschüsse (FA)

Von der Fraunhofer-Personenzertifizierungsstelle berufene Gremien von Fachkräften, welche Prüfungsinhalte verifizieren und validieren, Prüfungsaufgaben erstellen, für Fachanfragen zuständig sind sowie die Fraunhofer-Personenzertifizierungsstelle hinsichtlich der fachlichen Qualität der Prüfungsbeauftragten beraten. Näheres zu Aufgaben und Befugnissen findet sich in der »Geschäftsordnung des Fachausschusses«. Für jedes Zertifizierungsprofil wird jeweils ein eigener Fachausschuss gebildet.

■ Begriff »kennen«

Befindet sich nach der Bloom'schen Lernzieltaxonomie (*Taxonomie von Lernzielen im kognitiven Bereich*. (Taxonomy of educational objectives, 1974). 5. Auflage. Beltz Verlag, Weinheim 1976) auf der ersten und zweiten Stufe der sechststufigen Skala. Kennzeichnend dafür ist die Wiedergabe aus dem Gedächtnis auf Abruf durch Stichworte. Die dafür ausgeprägten Fertigkeiten sind Wissen, Erkennen und Nachahmen.

Das Ziel »kennen« in Prüfungen im Bereich Data Science beinhaltet für jedes Zertifizierungsprofil unterschiedliche Inhalte. Diese werden in den Anhängen zu diesem Dokument beschrieben.

■ Begriff »anwenden«

Ist ein synonym verwendeter Begriff für die dritte und vierte Lernzielstufe der Bloom'schen Lernzieltaxonomie.

Kennzeichnend dafür ist die eigene Verarbeitung und Anordnung des Gelernten. Die dafür ausgeprägten Fertigkeiten sind Verstehen, Reagieren und Üben. Das Ziel »anwenden« in Prüfungen im Bereich Data Science beinhaltet für jedes Zertifizierungsprofil unterschiedliche Inhalte. Diese werden in den Anhängen zu diesem Dokument beschrieben.

■ Begriff »beurteilen«

Ist ein synonym verwendeter Begriff für die Lernzielstufe »Transfer« und »Problemlösendes Denken«. Ist ein synonym verwendeter Begriff für die fünfte und sechste Lernzielstufe der Bloom'schen Lernzieltaxonomie.

Kennzeichnend dafür ist die Übertragung der Grundprinzipien auf neue, ähnliche Aufgaben bzw. auf für die Lernenden neue Leistungen. Die dafür ausgeprägten Fertigkeiten sind Anwenden, Werten, Koordinieren bzw. Problemlösen, Werte leben, Automatisieren.

Das Ziel »beurteilen« in Prüfungen im Bereich Data Science beinhaltet für die Zertifizierungsprofile unterschiedliche Inhalte. Diese werden in den Anhängen zu diesem Dokument beschrieben.

ALLGEMEINGÜLTIGE BEGRIFFE

4 VORGABEN FÜR DAS ZERTIFIZIERUNGSVERFAHREN

Nachfolgend werden Vorgaben für das Zertifizierungsverfahren beschrieben.

4.1 Ziel

Durch Zertifizierungen werden anhand von definierten Anforderungsprofilen Qualifikationsmerkmale geprüft und deren Qualität durch ein Kompetenzzertifikat attestiert.

4.2 Antragstellung

Zertifiziert werden können Personen, die eine Prüfung der Fraunhofer-Personenzertifizierungsstelle im Bereich Data Science erfolgreich bestehen und die definierten Zugangsvoraussetzungen entsprechend den Anlagen dieses Zertifizierungshandbuchs erfüllen.

Personen, welche an der Zertifizierungsprüfung / Wiederholungsprüfung teilnehmen möchten, haben bei der Fraunhofer-Personenzertifizierungsstelle dazu einen schriftlichen Antrag zu stellen. Dieser Antrag muss folgende Angaben des Prüfungsteilnehmenden enthalten:

- Name, Geburtsdatum, Geburtsort und private Postanschrift,
- Zu zertifizierendes Zertifizierungsprofil und
- Angabe, ob es sich um eine Erstprüfung oder Wiederholungsprüfung handelt.

Die Prüfungstermine werden von der Fraunhofer-Personenzertifizierungsstelle festgelegt.

4.3 Prüfungsdurchführung

Nachfolgend wird die Prüfungsdurchführung beschrieben.

Die Prüfungen auf Level 1 (Basic Level) zum »Certified Data Scientist Basic Level« erfolgen schriftlich und bestehen aus einem theoretischen Prüfungsteil. Die Prüfungen in den Spezialgebieten mit dem Titel »Certified Data Scientist Specialized in …« erfolgen ebenfalls schriftlich und bestehen aus einem theoretischen Prüfungsteil mit praktischen Anteilen, die schriftlich bearbeitet werden.

Für die Zertifizierung auf Level 2 erfolgt keine gesonderte Prüfung. Allerdings müssen die in der Anlage geforderten Zertifikate vorgelegt sowie die entsprechende Berufserfahrung nachgewiesen werden (siehe Anlage).

Für die Zertifizierung auf Stufe 3 erfolgt eine mündliche Prüfung zu einer Studienarbeit sowie der Nachweis über Berufserfahrung (Siehe Anlage).

Die Prüfungen auf Level 0 (Foundation Level) erfolgen als schriftliche Multiple Choice-Prüfungen.

4.3.1 Zusammenstellung und Bereitstellung der Prüfungsunterlagen und Beauftragung der Prüfungsbeauftragten

ZERTIFIZIERUNGSVERFAHREN ------

VORGABEN FÜR DAS

Die Fraunhofer-Personenzertifizierungsstelle stellt die Prüfungsfragen für die theoretische (schriftliche oder mündliche) Zertifizierungsprüfung aus einem vom zuständigen Fachausschuss bestätigten Fragenkatalog für das jeweilige Zertifizierungsprofil zusammen.

Die Bereitstellung der Prüfungsaufgaben muss zeitnah zur Prüfung erfolgen, damit die Prüfungsbeauftragten die Prüfung zum festgesetzten Termin durchführen können. Zudem muss die Bereitstellung der Prüfungsaufgaben geschützt vor unbefugtem Zugriff erfolgen.

Die Leitung der Fraunhofer-Personenzertifizierungsstelle beauftragt die Prüfungsbeauftragten mit der Abnahme und Korrektur der Prüfung.

4.3.2 Durchführung von schriftlichen Prüfungen (theoretisch und praktisch)

Die schriftlichen Prüfungen erfolgen in der Regel als Präsenzprüfungen können aber auch als online-überwachte Prüfungen durchgeführt werden. Ob und zu welchen Terminen Präsenz- oder online-überwachte Prüfungen durchgeführt werden, entscheidet die Fraunhofer-Personenzertifizierungsstelle.

Die Präsenzprüfungen finden an einem von der Fraunhofer-Personenzertifizierungsstelle abgenommenen Ort statt, der die von der Fraunhofer-Personenzertifizierungsstelle festgelegten Bedingungen erfüllt.

Die online-überwachten Prüfungen erfolgen zur Vermeidung von Täuschungsversuchen mit Hilfe einer geeigneten Software in von den Teilnehmenden gewählten Räumlichkeiten unter Beachtung der von der Fraunhofer-Personenzertifizierungsstelle definierten Vorgaben. Die einzuhaltenden Vorgaben werden den Teilnehmenden rechtzeitig vor der Prüfung schriftlich zur Verfügung gestellt.

Die schriftlichen Prüfungen auf dem Level 1 (Basic Level) dauern 3,5 Stunden. Die schriftlichen Prüfungen auf dem Level 0 (Foundation Level) dauern 1 Stunde.

Die Prüfungsfragen /- aufgaben einer schriftlichen Prüfung sind bei Präsenzprüfungen handschriftlich und bei online-überwachte Prüfungen durch Eingabe mit einer Tastatur zu beantworten. Es wird sichergestellt, dass für die Beantwortung der Fragen der theoretischen Prüfung ausreichend Zeit zur Verfügung steht. Hierzu wird bereits bei der Konzeption der Fragen vom zuständigen Fachausschuss überprüft, wie viel Zeit die Beantwortung der Fragen ungefähr in Anspruch nimmt.

Hilfsmittel sind grundsätzlich keine zugelassen.

Für Teilnehmende, die die Prüfung aufgrund einer Beeinträchtigung nicht in der vorgesehenen Form durchführen können, sind individuelle Ausnahmeregelungen vorgesehen.

4.3.3 Durchführung mündlicher Prüfungen (theoretisch und praktisch)

Mündliche Prüfungen finden in Form von Einzelprüfungen statt und werden von mindestens zwei Prüfungsbeauftragten durchgeführt. Die mündlichen Prüfungen finden in der Regel als Präsenzprüfung statt, können aber auch als online-überwachte Prüfungen durchgeführt werden. Ob und zu welchen Terminen Präsenz- oder online-

überwachte Prüfungen durchgeführt werden, entscheidet die Fraunhofer-Personenzertifizierungsstelle.

Die Präsenzprüfungen finden an einem von der Fraunhofer-Personenzertifizierungsstelle abgenommenen Ort statt, der die von der Fraunhofer-Personenzertifizierungsstelle festgelegten Bedingungen erfüllt.

Die online-überwachten Prüfungen erfolgen zur Vermeidung von Täuschungsversuchen mit Hilfe einer geeigneten Software in von den Teilnehmenden gewählten Räumlichkeiten unter Beachtung der von der Fraunhofer-Personenzertifizierungsstelle definierten Vorgaben. Die einzuhaltenden Vorgaben werden den Teilnehmenden rechtzeitig vor der Prüfung schriftlich zur Verfügung gestellt.

Die Prüfungsfragen und -aufgaben werden dem Prüfungsfragenkatalog entnommen, der vom Fachausschuss Data Science zusammengestellt wurde.

Mündliche Prüfungen werden im Zertifizierungsprofil »Senior Data Scientist« durchgeführt. Im Rahmen eines Fachgesprächs werden die Prüfungsteilnehmenden aufgefordert, ihre Studienarbeit (Zulassungsvoraussetzung) zu präsentieren und Fachfragen zu der Arbeit sowie weiterführende Fragen im Bereich Data Science zu beantworten.

Das Fachgespräch ist in drei Abschnitte unterteilt:

- 1. Präsentation der Projektarbeit (20 Min)
- 2. Fragen zur Projektarbeit mit Bezug zu Data Science im Allgemeinen und der nachgewiesenen Spezialisierung im Besonderen (15 Min)
- 3. Weiterführende Fragen im Bereich Data Science (15 Min)

Hilfsmittel sind grundsätzlich keine zugelassen. Allerdings erfolgt die Präsentation der Ergebnisse anhand einer im Vorfeld einzureichenden Präsentation. Zudem darf ein Exemplar der eingereichten Studienarbeit mitgeführt werden.

Für Teilnehmende, die die Prüfung aufgrund einer Beeinträchtigung nicht in der vorgesehenen Form durchführen können, sind individuelle Ausnahmeregelungen vorgesehen.

4.4 Prüfungsfragen und -aufgaben

Der Prüfungsfragenkatalog unterscheidet sich je nach Zertifizierungsprofil. Gleiches gilt für die Anzahl der Fragen pro Themenkomplex.

Der Prüfungsfragenkatalog beinhaltet je nach Zertifizierungsprofil und zu erreichender Lernzielstufe rein theoretische Prüfungsfragen und Prüfungsfragen mit Praxisbezug.

Die Fragen sind eindeutig den Zertifizierungsprofilen und Themenbereichen zugeordnet. Den Prüfungsteilnehmenden dürfen nur Fragen und Aufgaben gestellt werden, die ihren fachlichen Anforderungsprofil entsprechen.

4.5 Auswertung und Bewertung von Prüfungen

VORGABEN FÜR DAS ZERTIFIZIERUNGSVERFAHREN

Die Prüfungsteilnehmenden müssen einen Mindesterfüllungsgrad ihrer Aufgaben von 67% erreichen.

Bei Abweichungen unter dem Mindesterfüllungsgrad wird kein Zertifikat erteilt.

Bei Nichtbestehen kann die Prüfung maximal zweimal wiederholt werden.

Für jede Frage und Aufgabe werden den Prüfungsbeauftragten Musterlösungen vorgegeben, die als Richtlinie für die Beurteilung der Frage verwendet werden. Zusätzlich wird für jede Frage und Aufgabe die zu erreichende Punktzahl durch den zuständigen Fachausschuss vorgegeben.

4.6 Zertifizierung

Nach erfolgreich abgelegter Prüfung und Erfüllung der Zugangsvoraussetzungen wird den Prüfungsteilnehmenden von der Fraunhofer-Personenzertifizierungsstelle das für das jeweilige Zertifizierungsprofil vorgesehene Zertifikat ausgehändigt.

Die Prüfungsteilnehmenden haben die Möglichkeit, fehlende Berufserfahrung innerhalb von einem Jahr nach Ablegen der jeweiligen Zertifizierungsprüfung (Zertifizierungsprofile in den Anhängen) nachzuweisen. Die Zertifikatserteilung erfolgt, sobald die Berufserfahrung nachgewiesen wurde. Die Zertifikatserteilung muss spätestens ein Jahr nach Ablegen der letzten Prüfung erfolgen.

Zertifikate im Zertifizierungsbereich »Data Science« (unabhängig vom Zertifizierungsprofil) sind unbegrenzt gültig.

5 RECHTE UND PFLICHTEN (Stand Dezember 2023)

Nachfolgend werden die Rechte und Pflichten von zertifikatstragenden Personen beschrieben.

5.1 Bekanntmachung

Die Fraunhofer-Personenzertifizierungsstelle darf auf schriftliche Anfrage, (z.B. von potenziellen Auftraggebern einer zertifikatstragenden Person) unter Angabe der Zertifikatsnummer Auskunft darüber erteilen, ob diese Person das Zertifikat rechtmäßig trägt. Zur Identifikation der zertifikatstragenden Person werden deren Name, Geburtsdatum und Geburtsort gespeichert. Mit der Anmeldung erklären Teilnehmende durch ihre Unterschrift ihre Absicht, diese Regelungen im Falle der Erteilung des Zertifikats zu akzeptieren. Die Fraunhofer-Personenzertifizierungsstelle ist an die Bestimmungen des deutschen Bundesdatenschutzgesetzes gebunden.

5.2 Rechte

Die zertifikatstragende Person ist berechtigt, im Rahmen ihrer Tätigkeit im Bereich ihres Zertifizierungsprofils:

- auf persönlichen Briefbögen, in sonstigen Drucksachen in Zusammenhang mit ihrer Person sowie im Internet im Zusammenhang mit ihrer Person auf ihre Zertifizierung wie folgt hinzuweisen: »zertifizierter NAME DES ZERTIFIKATS, geprüft durch die Fraunhofer-Personenzertifizierungsstelle« oder »zertifizierter »NAME DES ZERTIFIKATS« (z.B. »zertifizierter Data Scientist (Basic Level)« oder »zertifizierter Data Scientist specialized in Data Analytics«). Bei Verwendung der Variante 1 ist darauf zu achten, dass die Bezeichnung »geprüft durch die Fraunhofer-Personenzertifizierungsstelle« nicht größer ist als der zugehörige Name der Person.
- die ausgehändigte Zertifizierungs-Urkunde zu verwenden, allerdings nur im Ganzen.
- das Zertifizierungshandbuch des jeweiligen Zertifizierungsprofils einzusehen, welches das Zertifizierungssystem im Bereich des jeweiligen Zertifizierungsprofils der Fraunhofer-Personenzertifizierungsstelle erläutert.

Näheres ist unter den Pflichten geregelt.

5.3 Pflichten

Folgende Pflichten sind bei der Ausübung der Aufgaben im Bereich des jeweiligen Zertifizierungsprofils von der zertifikatstragenden Person einzuhalten:

5.3.1 Gewissenhaftigkeit

Die zertifikatstragende Person hat die in ihrem zertifizierten Profil genannten Tätigkeiten unter Berücksichtigung der anerkannten Regeln im Bereich des jeweiligen Zertifizierungsprofils zu erledigen.

Das Handeln der zertifikatstragenden Personen ist von dem Grundsatz geprägt, stets ein fehlerfreies und qualitativ hochwertiges Arbeitsergebnis zu erzielen.

Sie ist verpflichtet, die Zertifizierung nicht in einer missbräuchlichen Art und Weise zu verwenden und keinerlei Aussagen zu treffen, die von der Fraunhofer-Personenzertifizierungsstelle als irreführend oder unbefugt betrachtet werden müssen.

RECHTE UND PFLICHTEN (Stand Dezember 2023)

5.3.2 Unabhängigkeit

Die zertifikatstragende Person hat insbesondere darauf zu achten, dass sie ihr Handeln ohne Rücksicht auf dienstliche Beziehungen im Unternehmen, die übrigen Beschäftigten und / oder deren Ergebniswünschen ausrichtet (persönliche Unabhängigkeit).

5.3.3 Persönliche Aufgabenerfüllung

Die zertifikatstragende Person hat die von ihr geforderten Leistungen bei der Vorbereitung, Durchführung und Bewertung von Projekten im Bereich des zertifizierten Profils persönlich zu erbringen bzw. zu überwachen. Sie darf ihre Zertifizierungsurkunde nicht in missbräuchlicher Weise verwenden.

5.3.4 Zulässige Verwendung von Zertifikaten

Folgende Regelungen gelten bezüglich der Verwendung von Zertifikaten:

- Das Zertifikat wird zwar der jeweiligen zertifikatstragenden Person erteilt; die Zertifikatsurkunde bleibt jedoch Eigentum der Fraunhofer-Personenzertifizierungsstelle.
- Es dürfen nur gültige Zertifikate verwendet werden.
- Das Zertifikat darf nicht missbräuchlich verwendet werden.
- Die Zertifizierungs-Urkunde darf nicht verändert werden und nur im Ganzen verwendet werden.
- Das Zertifikat ist der Fraunhofer-Personenzertifizierungsstelle unverzüglich zurückzugeben, nachdem das Zertifikat ausgelaufen ist, oder sobald die zertifikatstragende Person durch die Fraunhofer-Personenzertifizierungsstelle über den Entzug des Zertifikats informiert wurde.
- Bei Aussetzung, Erlöschen oder Entzug von Zertifikaten ist die Verwendung des Zertifikats unverzüglich einzustellen; etwaige Hinweise auf das Zertifikat und die Fraunhofer-Personenzertifizierungsstelle sind unverzüglich zu löschen. Etwaige noch vorhandene Briefbögen und sonstige Drucksachen sind, im Falle der Aussetzung für deren Dauer nicht zu verwenden, ansonsten sind sie zu vernichten.
- Die Nutzung des Zertifikats bzw. Hinweise auf das Zertifikat sind nur im Geltungsbereich des Zertifikats gestattet.
- Das Zertifikat darf ausschließlich im Zusammenhang mit der darin zertifizierten Person verwendet werden.
- Die Verwendung des Zertifikats und Hinweise auf das Zertifikat sind nur zulässig, wenn für den Betrachter eindeutig erkennbar ist, welche Person in welchem Bereich geprüft und zertifiziert wurde.
- Durch die Verwendung des Zertifikats und Hinweise auf das Zertifikat darf nicht der Eindruck entstehen, dass die zertifizierte Person zum Personal der Fraunhofer-Gesellschaft gehört oder sie in ihrem Auftrag handelt.
- Die zertifikatstragende Person ist für die korrekte Verwendung des Zertifikats verantwortlich; etwaige Zweifel gehen zu ihren Lasten.

5.3.5 Verwendung des Fraunhofer-Logos

Das Zertifikat der Fraunhofer-Personenzertifizierungsstelle enthält auch das Fraunhofer-Logo. Das Logo darf ausschließlich als Teil des Zertifikats verwendet werden und zwar dergestalt, dass die Zertifizierungs-Urkunde im Ganzen als Nachweis der ausstellenden Fraunhofer-Personenzertifizierungsstelle für z. B. Kunden oder Arbeitgeber kopiert bzw. im Internet eingestellt werden kann. Jedwede darüber hinaus gehende Nutzung des Fraunhofer-Logos oder die markenmäßige Verwendung des Namens Fraunhofer ist ausdrücklich untersagt und kann im Falle von Zuwiderhandlungen Schadensersatzansprüche der Fraunhofer-Gesellschaft nach sich ziehen.

5.3.6 Anzeigepflicht

Die zertifikatstragende Person hat der Fraunhofer-Personenzertifizierungsstelle unverzüglich schriftlich anzuzeigen:

- Namensänderung (z. B. durch Hochzeit),
- die Änderung ihres Wohnsitzes,
- den Verlust des Zertifikates.

Zudem muss die zertifikatstragende Person die Fraunhofer-Personenzertifizierungsstelle unmittelbar über Angelegenheiten informieren, die ihre Fähigkeit weiterhin die Zertifizierungsanforderung zu erfüllen, beeinträchtigen können (z. B. neu auftretende körperliche Einschränkungen).

5.3.7 Auskunftspflicht

Die zertifikatstragende Person hat auf Verlangen der Fraunhofer-Personenzertifizierungsstelle die Einhaltung ihrer Pflichten durch erforderliche Auskünfte (mündlich / schriftlich) innerhalb der gesetzten Fristen und unentgeltlich zu erteilen sowie angeforderte Unterlagen auf ihre Kosten vorzulegen.

Sie kann die Auskunft auf solche Fragen verweigern, deren Beantwortung sie selbst oder einen ihrer Angehörigen der Gefahr strafrechtlicher Verfolgung oder eines Verfahrens nach dem Gesetz über Ordnungswidrigkeiten aussetzen würde.

5.4 Verstoß gegen die Pflichten als zertifikatstragende Person

Ein Verstoß gegen die unter Punkt 5.3.1 bis 5.3.7 aufgeführten Pflichten führt je nach Schwere zur Aussetzung oder zum Entzug der Zertifizierung, welche der zertifikatstragenden Person schriftlich mitgeteilt wird. Für die Dauer der Aussetzung bzw. nach erfolgtem Entzug der Zertifizierung ist es der zertifikatstragenden Person untersagt, auf die Zertifizierung und die Fraunhofer-Personenzertifizierungsstelle hinzuweisen.

ANLAGE A: »CERTIFIED DATA SCIENTIST BASIC LEVEL«

ANLAGE A: »CERTIFIED DATA SCIENTIST BASIC LEVEL«

A 1 Verweis auf andere Normen und Dokumente

■ EN ISO 17024

A 2 Anforderungsprofil

A 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil eines »Certified Data Scientist Basic Level« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Ein zertifizierter »Data Scientist Basic Level«

- ist informiert über alle Ebenen der Data Science Wertschöpfungskette,
- ist in der Lage aus großen Datenmengen Informationen abzuleiten, die für das Unternehmen nutzbringend verwendet werden können,
- verwendet dabei Methoden u.a. aus der Informatik, der Mathematik, der Statistik, des maschinellen Lernens und der Mustererkennung,
- verbindet analytische Fähigkeiten mit technischem Verständnis für verarbeitende Software-Architekturen und Geschäftsverständnis und
- stellt ein Bindeglied zwischen verschiedenen Ebenen eines Unternehmens dar.

Abgrenzungskriterien des »Certified Data Scientist Basic Level« gegenüber anderen Profilen im Bereich Data Science sind im Zertifizierungshandbuch dokumentiert.

Die Bezeichnung lautet: »Certified Data Scientist Basic Level«

A 2.2 Zugangsvoraussetzungen

A 2.2.1 Vorbildungen

Ein zertifizierter »Data Scientist Basic Level« muss nachweisen:

Ein erfolgreich abgeschlossenes Studium an

- einer deutschen wissenschaftlichen Hochschule,
- einer deutschen staatlichen oder staatlich anerkannten Fachhochschule oder
- einer von der zuständigen Stelle des Landes als gleichwertig anerkannten ausländischen Hochschule

oder

- eine mindestens einjährige Tätigkeit im Zusammenhang mit der Analyse von Daten im Unternehmensumfeld etwa im Bereich Business Intelligence
- oder eine mindestens einjährige Tätigkeit in Übereinstimmung mit dem Anforderungsprofil in Abschnitt A2.

Anmerkung:

Im zu prüfenden Einzelfall hat die antragstellende Person die Möglichkeit, fehlende Zugangsvoraussetzungen innerhalb von einem Jahr nach Ablegen der Prüfung nachzuweisen.

Nach Prüfung der eingereichten Unterlagen entscheidet die Fraunhofer-Personenzertifizierungsstelle über die Voraussetzung. Sollten Zugangsvoraussetzungen nicht erfüllt sein, teilt die Fraunhofer-Personenzertifizierungsstelle dies der antragstellenden Person unverzüglich über das Sekretariat der Fraunhofer-Personenzertifizierungsstelle mit.

Grundsätzlich kann die Fraunhofer-Personenzertifizierungsstelle in begründeten Ausnahmefällen davon abweichende Nachweise akzeptieren. Diese Nachweise und die Entscheidung der Fraunhofer-Personenzertifizierungsstelle sind zu dokumentieren.

A 2.2.2 Zusätzliche Ausbildungen und praktische Tätigkeiten

Ein »Certified Data Scientist Basic Level« muss keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

A 2.2.3 Persönliche Voraussetzungen

Keine.

Grundlage für die Prüfung zum »Certified Data Scientist Basic Level« sind folgende Kompetenzen (Lernziele):

Themenbereich	Kompetenzen (Lernziele)	kennen	anwenden			
Analysis of big data	Analysis of big data potentials					
Herausforderungen und Gefahren bei der Auswahl geeigneter Big Data Lösungen (Challenges and traps of selecting an appropriate big data solution)	 Den Ansatz zum geschäftszielorientierten Big Data und seine Ziele benennen können. Den Ansatz zum datengetriebenen Big Data und seine Ziele benennen können. 	х	-/-			
Vorgehen zur Potentialanalyse von Big Data für ein spezifisches Unternehmen (Analysis of big data potentials for a specific organization)	 Die Kernelemente der Potentialanalyse von Big Data und ihre Ziele benennen können. Die fünf Kernelemente der Potenzialanalyse sind: Umfang und aktuelle Situation (Scope & Current Situation), Geschäftslösung (Business Solution), Technische Lösung (Technical Solution), Evaluation und Bereitschaft (Evaluation & Readiness) und Geschäftsszenario (Business Case). 	X	-/-			
Geschäftsmodel (Business Model)	 Die Kernelemente des Geschäftsmodels und ihre Bedeutung erläutern (benennen) können. Die neun Kernelemente des Geschäftsmodels sind: Nutzenversprechen (Value Proposition), Kundensegmente (Customer Segments), Kundenbeziehungen (Customer Relationships), Kanäle (Channels), Einnahmequellen (Revenue Streams), Schüsselaktivitäten (Key Activities), Schüsselressourcen (Key Resources), Schlüsselpartner (Key Partners), Kostenstrukturen (Cost Structures). 	X	-/-			

Themenbereich	Kompetenzen (Lernziele)	kennen	anwenden
Geschäftsszenario (Business Case)	 Den Unterschied zwischen Zieloption (Zielescenario) und Alternativoptionen (Alternativszenarien) benennen können. Die Kernelemente einer Lösungsoption (Lösungsszenario) und ihre Ziele benennen können. Die fünf Kernelemente eines Lösungsszenarios sind: Annahmen (Assumptions), Nutzen (Benefit), Kosten (Cost), Risiken (Risks), und Zeitrahmen (Timeframe). 	X	-/-
Vorgehen zur Evaluation und Verbesserung der potenziellen Lösungen	 Die Kernkriterien zur Evaluation einer Big Data Lösungsidee und die Zeile benennen können. Die drei Evaluationskriterien sind: Attraktivität (Desirability), Profitabilität (Profitability), Machbarkeit (Feasibility) Erfolgskriterien 	X	-/-
Vorgehen zur Analyse der Leistungsfähigkeit und Bereitschaft eines Unternehmens bzgl. Big Data (Analyzing organizational capability and readiness w.r.t. big data)	 Bestandteile eines Big-Data-Lösungskonzepts (Solution Concept) und ihre Ziele benennen können. Die sieben Bestandteile eines Big-Data-Lösungskonzepts sind: Konkretes Zielscenario (Concrete Traget Scenario), Spezifische Informationsbedürfnisse (Specific Information Needs), Lösungsidee und Annahmen (Solution Idea and Assumptions), Datenanalyseansatz (Data Analysis Approach), Bewertungskriterien und -ansatz (Evaluation Approach), Benötigte Daten und Datenqualitätsbedürfnisse (Required Data and Quality Needs), Architektur-/Infrastrukturvorschlag (Architecture / Infrastructure Proposal). 	X	-/-

Themenbereich Kompetenzen (Lernziele) kennen anwenden Zweck und Hauptschritte der Bereitschafts--/-Bereitschaftsanalyse analyse (Readiness (Readiness Analysis) benennen Analysis) können. Vorgehen zur Die Stufen des -/-Umsetzungsansatzes für ein gestuften **Umsetzung und** Big-Data-Konzept und die Anpassung eines entsprechenden Ziele Big Data benennen können. Lösungskonzepts Die fünf Stufen sind: Potentialanalyse (Potential (Staged realization Analysis), Laborstudie-klein of big data solution (Lab Small), Laborstudieumfänglich (Lab Full), concept) Feldstudie (Field Study), Markteinführung (Roll-Out) **Data Management** Grundaufgaben des Ziele des Datenmanagements -/beschreiben und in CRISP Datenmanagements einordnen können. (What is data management) Data Lake Eine Data Lake Architektur -/-Χ Architekturen und die Funktionen verschiedener Schichten beschreiben können. Datenmodellierung Grundbegriffe der Χ -/-Datenmodellierung erklären und voneinander abgrenzen können. Die Schritte zur Erstellung eines Konzeptuellen Datenmodells darstellen können. Datenintegration Allgemeine Schritte der -/-Datenintegration beschreiben können. Verschiedene Datenintegrationsarchitekturen wie materialisierte oder virtuelle erläutern können. Verschiedene Verfahren der -/-Datenaufbereitung Χ Datenaufbereitung benennen und erklären können. Das richtige Verfahren in einem Beispielszenario ermitteln können.

ANLAGE A: »CERTIFIED DATA SCIENTIST BASIC LEVEL«

Themenbereich	Kompetenzen (Lernziele)	kennen	anwenden
Datenqualität	■ Eine Definition für Datenqualität ausdrücken können. Die Begriffe Datenqualitätsziel, Charakteristik, Messmethode und Beobachtung voneinander abgrenzen können. Die Phasen der TDQM-Methodik beschreiben können.	X	-/-
Data Analytics			
Definition von Data Mining und verwandten Konzepten (Definition of data mining and related concepts)	 Definition von Datenanalyse und Unterschied zu Reporting formulieren können. Notwendige Skills für Datenanalysten (Statistik- Programmieren- Domänenwissen) benennen können. 	Х	-/-
Branchen- übergreifende Standardprozesse zum Data Mining (Cross industry standard process for data mining)	 CRISP-DM mit seinen Phasen business understanding, data understanding, data preparation, modeling, evaluation, deployment darstellen können 	х	-/-
Grundsätzliche Zwecke und Modellklassen der Datenanalyse (Main purposes and types of data analysis)	 Grundsätzliche Zwecke und Modellklassen der Datenanalyse erklären können. 	х	-/-
Attribute und Datentypen (Attributes and data types)	 Arten von Attributen (id. Kategorisch vs. Numerisch, Label, abgeleitete Attribute erklären können. 	Х	-/-
Ansätze zur Datenaufbereitung (Data preparation approaches)	 Transformation, Reduktion, Merkmalsauswahl, Normalisierung und Feature Design erklären können. 	х	-/-
Aufgaben- stellungen und Modelle des statistischen Lernens (Models of statistical learning)	 Überwachtes und unüberwachtes Lernen beschreiben können Regression, Klassifikation und Clusteranalyse erklären können Gängige Lernverfahren nennen können 	X	-/-

Themenbereich Kompetenzen (Lernziele) kennen anwenden Evaluation und Performanz-Maße wie Х -/-Accuracy, Precision, Recall, Optimierung statistischer RMS absolute mean error, Modelle ROC Kurve, Silhouetten-(Model evaluation) Kurven kennen Kreuzvalidierung erklären können Konfusionsmatrizen erklären können Overfitting erläutern können Schildern, wie Overfitting erkannt werden kann Visualisierung Visualisierungs-Exploration & Bestätigung, Χ -/zwecke Erklärung (Visualization purposes) Visualisierungsziele Den Verwendungszweck von Χ Visualisierungen (Visualization unterscheiden können. Beschreiben können, dass Goals) man Visualisierung einsetzt, um 1) eigene Analysen durchzuführen und zu verstehen, und 2) um die gefundenen Ergebnisse zur Erklärung zielgruppengerecht visuell aufzubereiten. Herausforderungen Die wichtigsten Χ Χ bei Big Data Herausforderungen bei Big Visualisierung Data Visualisierung kennen und verstehen. (Big Data Beschreiben können, warum Visualization and große Datenmengen zunächst durch filtern, aggregieren, Analysis: Challenges of sampeln etc. so zu verkleinern visualizing big data) sind, dass existierende Werkzeuge für die Visualisierung und interaktive Exploration der Daten verwendet werden kann.

ANLAGE A: »CERTIFIED DATA SCIENTIST BASIC LEVEL«

Themenbereich	Kompetenzen (Lernziele)	kennen	anwenden
Grundwissen Big Data Visualisierung (Big Data Visualization and Analysis: Basics)	 Notwendige Grundlagen bzgl. Visualisierungen kennen und verstehen. Beschreiben können, wo die Grenzen menschlicher Wahrnehmung liegen. Wichtige Visualisierungsbeispiele und ihre Einsatzmöglichkeiten kennen. Zumindest die vier wichtigsten Grundprinzipien Effizienz, Verständlichkeit, Konsistenz und Korrektheit beim Einsatz von Visualisierungen kennen und beschreiben können. Einige Visualisierungswerkzeuge kennen. Erläutern können, aus was man bei der Auswahl eines Werkzeugs achten sollte. 	X	X
Big Data Visualisierungs- ansätze (Approaches to visualize big data)	 Datentransformation, Datenreduktion, Interaktive Visualisierung, Verdichtete (muster-) Diagramme, Mulit- Diagramme, Hybridee Diagramme, Animation 		
Big Data Systems			
Grundaspekte von Verarbeitungs- und Speicherungs- systemen für Big Data (Big data processing vs. big data storage systems)	 Die Bedeutung von Grundbegriffen wie Horizontal scalability, fault tolerance kennen und erklären können. Grundverfahren zur Verteilung von Daten und Datenverarbeitung beschreiben können, Grundeigenschaften von Big data databases und NoSQL Datenbanken nennen können. 	х	-/-
CAP-Theorem über verteilte Systeme (CAP Theorem for distributed systems)	 Die Bedeutung des CAP Theorems sowie der verwendete Begrifflichkeit wie Data Replication, Availability, Eventual consistency erklären können. 	Х	-/-

Themenbereich Kompetenzen (Lernziele) kennen anwenden Den Aufbau und Lambda--/-Χ Grundprinzipien der Lambda-Architekturen, Verarbeitung in Architektur wie All-Data Batch- und Speed-Principle Precomputed Views, Layer Organisation in Batch- and (Lambda architecture, batch Speed processing erklären and speed können. processing) Konzept von Den Aufbau des Map Reduce -/-Χ MapReduce Prinzips, Beispiele für Map Reduce Anwendungen (Word (The concept of MapReduce) Count), sowie die Aufgabe und Leistung des Fault-Tolerant Distributed File System (HDFS) beschreiben können. Konzepte für Grundprinzipien und -/-Χ Speed-Layer und Herausforderungen der Verarbeitung von Verarbeitung von Datenströmen beschreiben Datenströmen (Speed layers and können. stream processing) Die prinzipielle Konzepte und Χ -/-Methoden zur Vorgehensweise zur Datenanalyse in Big Modellbildung in Big Data Data Systemen Systemen beschreiben (Concepts and können, Beispiele von Data methods for data Analytics Tools (R, Spark) analysis in Big Data kennen und ihre Leistungsfähigkeit bzgl. Big System) Data Analytics einschätzen können. **Trustworthiness** Alle sechs für die KI -/-Grundwissen zu Absicherung Absicherung relevanten datengetriebener Handlungsfelder nennen Modelle können Ethics and -/-Verstehen, warum ethische Χ Bedenken und Grundsätze Autonomy beim Design, der Implementierung und Verwendung eines datengetriebenen Modells notwendig sind. Die vier unterschiedlichen Ausprägungsgrade von menschlicher Kontrolle über ein autonomes System beschreiben können.

ANLAGE A: »CERTIFIED DATA SCIENTIST BASIC LEVEL«

Themenbereich	Kompetenzen (Lernziele)	kennen	anwenden
Fairness	 Wissen, dass Fairness ein kontextabhängiges Konstrukt ist. Verstehen, dass Verzerrungen (Bias) in verschiedenen Produktlebenszyklen in ein datengetriebenes Modell (DGM) einfließen können. Bias-Mitigation Strategien in Abhängigkeit vom Auftrittsort im Produktlebenszyklus kennen. 	х	-/-
Privacy	 Die Begriffe 'Privacy', 'Personal data', 'direct identifier' und 'quasi identifier' kennen und beschreiben können. Die Kernprinzipien der DSGVO kennen. Anonymisierung und Pseudonymisierung definieren können. Das Konzept der k- Anonymität kennen und skizzieren können. Das Konzept der Differential Privacy kennen und beschreiben können. 	X	-/-
Transparency	 Wissen, dass die Transparenz das Erkennen von potentiellem Bias in den Daten und dem Modell, korrumpierten Daten, Outliers und Overfitting adressiert. Die unterschiedlichen Herangehensweisen zur Interpretierbarkeit von datengetriebenen Modellen beschreiben können. 	х	-/-
Robustness	 Die Begriffe Verlässlichkeit (engl. Reliability), Richtigkeit (engl. Correctness) und Robustheit (engl. Robustness) kennen, beschreiben und gegeneinander abgrenzen können. Die unterschiedlichen Input- Arten (known Unknowns, unknown Unknowns) sowie Abmilderungsmaßnahmen nennen und beschreiben können. 	X	-/-

Themenbereich	Kompetenzen (Lernziele)	kennen	anwenden
Security	 Die Schutzziele der Informationssicherheit nennen und beschreiben können. Die erweiterten Angriffsvektoren auf datengetriebenen Modellen nennen und beschreiben können. 	Х	-/-

ANLAGE A: »CERTIFIED DATA SCIENTIST BASIC LEVEL«

Der »Certified Data Scientist Basic Level« umfasst noch keine Themenbereiche, die er zwingend beurteilen können muss.

ANLAGE B: »CERTIFIED DATA SCIENTIST SPECIALIZED IN ASSURING SAFETY«

- B 1 Verweis auf andere Normen und Dokumente
- EN ISO 17024

B 2 Anforderungsprofil

B 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil eines »Data Scientist Specialized in Assuring Safety« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Ein zertifizierter »Data Scientist Specialized in »Assuring Safety«

- ist informiert über das Gefahren- und Innovationspotential von KI Anwendungen im sicherheitskritischen Umfeld,
- besitzt einen Überblick über die Grundlagen des Safety Engineerings,
- kennt die maßgeblichen KI Grundlagen aus dem Blickwinkel Safety,
- kann Nutzen und Verbindlichkeit von Safety und KI Standards einordnen,
- kennt eine Auswahl möglicher Strategien und Maßnahmen für sichere Kl und
- kann Assurance Cases, als mögliche Argumentationsgrundlage für KI-bezogene Sicherheitsnachweise, exemplarisch anwenden.

Abgrenzungskriterien des »Certified Data Scientist Specialized in Assuring Safety« gegenüber anderen Profilen im Bereich Data Science sind im Zertifizierungshandbuch dokumentiert.

Die Bezeichnung lautet: »Certified Data Scientist Specialized in Assuring Safety«

B 2.2 Zugangsvoraussetzungen

B 2.2.1 Vorbildungen

Ein zertifizierter »Data Scientist Specialized in Assuring Safety« muss nachweisen:

Ein erfolgreich abgeschlossenes Studium an

- einer deutschen wissenschaftlichen Hochschule,
- einer deutschen staatlichen oder staatlich anerkannten Fachhochschule oder
- einer von der zuständigen Stelle des Landes als gleichwertig anerkannten ausländischen Hochschule

oder

- eine mindestens einjährige Tätigkeit im Zusammenhang mit der Analyse von Daten im Unternehmensumfeld etwa im Bereich »Assuring Safety«
- oder eine mindestens einjährige Tätigkeit in Übereinstimmung mit dem Anforderungsprofil in Abschnitt B2.

Nachweis der Zulassungsvoraussetzungen:

Der Hoch-, Fachhoch- bzw. Fachschulabschluss wird nachgewiesen durch eine Kopie der Urkunde. Der Nachweis der Berufserfahrung sowie der zusätzlich geforderten Kenntnisse erfolgt durch die Bescheinigung des Arbeitgebers oder bei Selbstständigen durch eine eidesstattliche Erklärung.

Die Fraunhofer-Personenzertifizierungsstelle behält sich vor die Nachweise zu überprüfen. Nach Prüfung der eingereichten Unterlagen entscheidet die Fraunhofer-Personenzertifizierungsstelle über die Erfüllung der Voraussetzung. Sollten Zugangsvoraussetzungen nicht erfüllt sein, teilt die Fraunhofer-Personenzertifizierungsstelle dies dem Antragsteller unverzüglich über das Sekretariat der Fraunhofer-Personenzertifizierungsstelle mit.

Grundsätzlich kann die Fraunhofer-Personenzertifizierungsstelle in begründeten Ausnahmefällen davon abweichende Nachweise akzeptieren. Diese Nachweise und die Entscheidung der Fraunhofer-Personenzertifizierungsstelle sind zu dokumentieren.

Anmerkung:

Im zu prüfenden Einzelfall hat die antragstellende Person die Möglichkeit, fehlende Zugangsvoraussetzungen innerhalb von einem Jahr nach Ablegen der Prüfung nachzuweisen.

B 2.2.2 Zusätzliche Ausbildungen und praktische Anforderungen

Ein »Certified Data Scientist Specialized in Assuring Safety« muss keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

B 2.2.3 Persönliche Voraussetzungen

Keine.

Fraunhofer-Personenzertifizierungsstelle Zertifizierungshandbuch (Rev. 29) Data Science Gültig ab 20/05/2025

33 | 161

ANLAGE B: »CERTIFIED DATA SCIENTIST SPECIALIZED IN

ASSURING SAFETY«

B 2.3 Geforderte Kompetenzen (Lernziele)

Die Grundlage für die Prüfung zum »Data Scientist Specialized in Assuring Safety« sind ausschließlich die folgenden aufgeführten Kompetenzen (Lernziele) im Bereich »Assuring Safety« und müssen durch eine schriftliche Prüfung nachgewiesen werden:

Wissensgebiet	Kompetenzen/Lernziele	kennen	anwenden
Motivation für sichere KI	Beispiele für Gefahren- und Innovationspotential von KI Anwendungen nennen können, um die Nutzung und Absicherung von KI in sicherheitskritischen Anwendungen zu motivieren.	х	
	Beschreiben können, wie sich sichere KI in das breitere Themenfeld der vertrauenswürdigen KI einordnet.	Х	
	Die Bedeutung des Begriffs sicher ("safe") im Bezug auf KI erläutern können.	Х	
Grundlagen des Safety Engineering	Die grundlegende Terminologie im Bereich Safety (Gefahr, Risiko,) anwenden können.	Х	Х
	Die grundlegende Vorgehensweise beim Safety Engineering (Gefahren und Risikoanalyse, Sicherheitskonzept, Sicherheitsnachweis) erläutern können.	х	
	Die unterschiedlichen Scopes von Systemsicherheit, funktionaler Sicherheit, sicherheitsgerichteter Software-Entwicklung und sicherheitsgerichtete Hardware- Entwicklung unterscheiden und beschreiben können.	х	
	Die grundlegenden Maßnahmen zur Erfüllung von Sicherheitsanforderungen und deren Klassifikation (fault avoidance, fault removal, fault tolerance, fault forecasting) nennen und beschreiben können.	Х	
	Die Rolle von Safety Normen bei der Auswahl von Maßnahmen und die Bedeutung eines Sicherheitsintegritätslevel beschreiben können.	Х	

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
	Die grundlegenden Vorgehensweisen bei der Ableitung von Sicherheitsanforderungen an eine Komponente (unabhängig davon ob die Komponente KI beinhaltet) erläutern können.	х	
Grundlagen von KI aus dem Blickwinkel des Safety Engineering	Wichtige Begriffe und Konzepte aus dem Bereich Machine Learning nennen und diese erläutern können.	Х	
	Unterschiedliche Grade der Überwachung beim Lernen und den Unterschied zwischen Online- und Offlinelernen erkären können sowie die Implikation ihrer Anwendung in Bezug auf Safety erläutern und anhand von Beispielen einordnen können.	х	Х
	Wichtige Modellklassen im Bereich des überwachten Lernens, insbesondere auch tiefe Neuronale Netze, und ihre Charakteristiken erklären können und potentielle Herausforderungen im Bezug auf Safety ableiten können.	х	
	Relevante Metriken zur Beurteilung von Machine Learning Modellen nennen und Relevanz und Aussage aus Safety Sicht erläutern können.	х	х
	Das klassiche Vorgehen bei der Modellevaluierung sowie die Herausforderung des geeigneten Fittings eines Models an einem Beispiel erklären und hinsichtlich ihrer potentiellen Auswirkungen auf Safety erläutern können.	x	
	CRISP-DM als ein typisches Vorgehensmodell für Data Science Projekte beschreiben und Unterschiede und sich daraus ergebende Herausforderungen in Bezug auf klassische Vorgehensmodelle im Safety Engineering erläutern können.	х	
	Die wichtigsten Implikationen des Machine Learning auf Safety sowie Lücken und Fragen im Safety Engineering bezüglich KI als besondere Software erläutern können.	Х	

ANLAGE B: »CERTIFIED DATA
SCIENTIST SPECIALIZED IN
ASSURING SAFETY«

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
Überblick zur	Typische Kriterien nennen und Normen		wenden
Standardisierung	und Standards anhand dieser		
im Bereich sicherer	grundlegend einordnen können.	Х	
	(Gültigkeitsbereich: national vs.		
KI (inkl. generelle	europäisch vs. international;		
Standards)	Systemklasse wie		
	Bilderkennungssysteme;		
	Entwicklungsaktivität wie Testen).		
	die Besonderheiten von Safety Normen	Х	
	im Hinblick auf Gesetzte		
	(Produktsicherheitsgesetz,		
	Produkthaftungsgesetz) und		
	Richtlinienen (z.B. Maschinenrichtlinie) beschreiben und die		
	Begriffe "Vermutungswirkung",		
	"harmonisierte Norm" erläutern können.		
	Den Nutzen, die Verbindlichkeit und die	X	Х
	spezifische Relevanz von konkreten KI	^	^
	Standards und		
	Standardisierungsaktivitäten für das		
	Safety Engineering von KI-Systmen		
	einordnen können.		
Übersicht über	Strategien aus dem Safety Engineering	Х	
Strategien und	und ihre Anwendbarkeit im Bereich KI		
Maßnahmen für	erläutern können (Redundanz, Safety		
sichere KI	Supervisior, Entfernung aus Safty-		
Sichere Ki	krischem Pfad, Prozesse und		
	Qualitätssicherungsmaßnahmen,).		
	Ein vereinfachtes Lebenszyklus-Modell	Х	
	zur Einordnung von		
	Qualitätssicherungsmaßnahmen für KI		
	Komponenten und Daten (Spezifikation,		
	Konstruktion, Analyse, Testen, Einsatz) erläutern und seinen Bezug zu anderen		
	Lebenszyklus-Modellen beschreiben		
	können.		
	Maßnahmen (konstruktive wie	Х	
	analytisch), die im Rahmen der	Α	
	Spezifikation von KI-Komponenten zu		
	Safety beitragen, nennen und ihre		
	Anwendung beschreiben können.		
	Maßnahmen (konstruktive wie	Х	Х
	analytisch), die im Rahmen der		
	Spezifikation von Kl-Komponenten zu		
	Safety beitragen, hinsichtlich ihres		
	Beitrags zu Safety einordnen können.		
	Maßnahmen (z.B. hinsichtlich Model-Fit	Х	
	und Robustheit), die im Rahmen der		
	Konstruktion von KI-Komponenten zu		
	Safety beitragen, nennen und ihre		
	Anwendung beschreiben können.		
L	l	l .	1

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
Übersicht über Strategien und Maßnahmen für sichere KI	Maßnahmen (z.B. hinsichtlich Model-Fit und Robustheit), die im Rahmen der Konstruktion von KI-Komponenten zu Safety beitragen, hinsichtlich ihres Beitrags zu Safety einordnen können.	Х	х
	Maßnahmen (z.B. zur Identifikation von Schwachstellen und Ursachen), die im Rahmen der Analyse von Kl-Komponenten zu Safety beitragen, nennen und ihre Anwendung beschreiben können.	Х	
	Maßnahmen (z.B. zur Identifikation von Schwachstellen und Ursachen), die im Rahmen der Analyse von KI- Komponenten zu Safety beitragen, hinsichtlich ihres Beitrags zu Safety einordnen können.	Х	Х
	Maßnahmen (wie z.B. Testkriterien und statistisches Testen), die im Rahmen des Testens von KI-Komponenten zu Safety beitragen, nennen und ihre Anwendung beschreiben können.	Х	
	Maßnahmen (wie z.B. Testkriterien und statistisches Testen), die im Rahmen des Testens von KI-Komponenten zu Safety beitragen, hinsichtlich ihres Beitrags zu Safety einordnen können.	Х	Х
	Maßnahmen (z.B. zur Modellüberwachung und Unsicherheitsprognose), die im Rahmen des Einsatzes von Kl-Komponenten zu Safety beitragen, nennen und ihre Anwendung beschreiben können.	Х	
	Maßnahmen (z.B. zur Modellüberwachung und Unsicherheitsprognose), die im Rahmen des Einsatzes von KI-Komponenten zu Safety beitragen, hinsichtlich ihres Beitrags zu Safety einordnen können.	Х	Х
	Datenbezogene Maßnahmen (konstruktive wie analytisch), die im Lebenszyklus einer KI-Komponente zu Safety beitragen, nennen und ihre Anwendung beschreiben können.	Х	
	Datenbezogene Maßnahmen (konstruktive wie analytisch), die im Lebenszyklus einer KI-Komponente zu Safety beitragen, hinsichtlich ihres Beitrags zu Safety einordnen können.	Х	Х

ANLAGE B: »CERTIFIED DATA
SCIENTIST SPECIALIZED IN
ASSURING SAFETY«

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden
Assurance Cases	Assurance Cases als Mittel zur	Х	
für sichere KI	Argumentation von Safety sowie ihr		
	Notation beschreiben können.		
	Unterschiedliche Argumentationsstrategien	Х	
	im Rahmen von Assurance Cases für KI		
	sowie Risikoakzeptanzkriterien erläutern		
	können.		
	Evidenzen auf Basis ausgewählter		Х
	Maßnahmen in der Argumentation eines		
	Assurance Case für KI einordnen können.		
	Für eine konkrete KI-Anwendung einen		Х
	groben Entwurf für ausgewählte Bereiche		
	eines Assurance Case erstellen können.		

ANLAGE C: »CERTIFIED DATA SCIENTIST SPECIALIZED IN **BIG DATA ANALYTICS«**

ANLAGE C: »CERTIFIED DATA SCIENTIST SPECIALIZED IN BIG DATA ANALYTICS«

- Verweis auf andere Normen und Dokumente
- EN ISO 17024

Anforderungsprofil C 2

C 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil eines »Data Scientist Specialized in Big Data Analytics« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Ein zertifizierter »Data Scientist Specialized in Big Data Analytics«

- ist informiert darüber, wie Algorithmen zur Datenanalyse in einer skalierbaren Big-Data-Architektur implementiert werden können,
- kennt den Einsatz von Batch- und Streaming Verfahren und Systemen für die Datenanalyse auf großen Datenmengen,
- kennt Methoden des maschinellen Lernens und der Anwendung in Tools für Big Data Systeme wie z.B. Spark und kann diese einsetzen,
- kennt Strategien und Verfahren zum Aufbau und Einsatz von Systemen zur Datenanalyse unter Echtzeitbedingungen sowie für das Deployment von Analysemodellen und
- kennt fortgeschrittene Analysetechniken und Algorithmen sowie deren Umsetzung in Big Data Systemen.

Abgrenzungskriterien des »Certified Data Scientist Specialized in Big Data Analytics« gegenüber anderen Profilen im Bereich Data Science sind im Zertifizierungshandbuch dokumentiert.

Die Bezeichnung lautet: »Certified Data Scientist Specialized in Big Data Analytics«

Kurzbezeichnung: »Big Data Analyst«

C 2.2 Zugangsvoraussetzungen

C 2.2.1 Vorbildungen

Ein zertifizierter »Data Scientist Specialized in Big Data Analytics« muss nachweisen:

Ein erfolgreich abgeschlossenes Studium an

- einer deutschen wissenschaftlichen Hochschule,
- einer deutschen staatlichen oder staatlich anerkannten Fachhochschule oder
- einer von der zuständigen Stelle des Landes als gleichwertig anerkannten ausländischen Hochschule

oder

- eine mindestens einjährige Tätigkeit im Zusammenhang mit der Analyse von Daten im Unternehmensumfeld etwa im Bereich Big Data Analytics
- oder eine mindestens einjährige Tätigkeit in Übereinstimmung mit dem Anforderungsprofil in Abschnitt C2.

Anmerkung:

Im zu prüfenden Einzelfall hat die antragstellende Person die Möglichkeit, fehlende Zugangsvoraussetzungen innerhalb von einem Jahr nach Ablegen der Prüfung nachzuweisen.

Der Hoch-, Fachhoch- bzw. Fachschulabschluss sowie der Nachweis der Berufserfahrung erfolgt über eine Selbstauskunft. Die Fraunhofer-Personenzertifizierungsstelle behält sich vor die Selbstauskünfte zu überprüfen. Nach Prüfung der eingereichten Unterlagen entscheidet die Fraunhofer-Personenzertifizierungsstelle über die Erfüllung der Voraussetzung. Sollten Zugangsvoraussetzungen nicht erfüllt sein, teilt die Fraunhofer-Personenzertifizierungsstelle dies dem Antragsteller unverzüglich über das Sekretariat der Fraunhofer-Personenzertifizierungsstelle mit.

Grundsätzlich kann die Fraunhofer-Personenzertifizierungsstelle in begründeten Ausnahmefällen davon abweichende Nachweise akzeptieren. Diese Nachweise und die Entscheidung der Fraunhofer-Personenzertifizierungsstelle sind zu dokumentieren.

C 2.2.2 Zusätzliche Ausbildungen und praktische Tätigkeiten

Ein »Data Scientist Specialized in Big Data Analytics« muss keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

C 2.2.3 Persönliche Voraussetzungen

Keine.

C 2.3 Geforderte Kompetenzen (Lernziele)

Grundlage für die Prüfung zum »Data Scientist Specialized in Big Data Analytics« sind folgende Kompetenzen (Lernziele):

ANLAGE C: »CERTIFIED DATA SCIENTIST SPECIALIZED IN BIG DATA ANALYTICS«

Wissensgebiet	Kompetenzen (Lernziele)	ken- nen	an- wenden	beur- teilen
Einsatz von Big D	Data Systemen zur Datenanalyse)		
Grundlagen der Datenspeicher- ung und - verarbeitung in Big Data Systemen	 Die Prinzipien der verteilten Datenspeicherung und - verarbeitung in Big Data Systemen erklären können. Herausforderungen und Möglichkeiten bei der Implementierung von Machine Learning Algorithmen in Big Data Systemen beschreiben können. SQL basierte Big-Data Tools kennen und anwenden können, sowie den Unterschied zu Datenbanksystemen erklären können. Den hierarchischen Aufbau von Big Data Systemen zum Einsatz in der Datenanalyse erklären können. 	X	X	
Machine Learning Algorithmen in Big Data Tools	 Bibliotheken zur Datenanalyse in Big Data Systemen kennen und anwenden können. Möglichkeiten der verteilten Datenvorverarbeitung und Feature-Erzeugung kennen und mit Machine Learning Algorithmen aus den Bibliotheken verbinden können. Gängige Machine Learning Algorithmen wie Clustering, Regression und Klassifikation kennen und in Big Data Systemen anwenden können. 	X	X	

Wissensgebiet	Kompetenzen (Lernziele)	ken- nen	an- wenden	beur- teilen
	 Beispiele der Parallelisierung von Machine-Learning Algorithmen auf Big Data Systemen erklären können. Zusammenhang zwischen der Parallelisierung von Machine- Learning Algorithmen und den Big Data Basisoperatoren wie Map/Reduce erklären können. 	Х	X	
Daten-analysen mit graphischen Tools	 Das Arbeiten mit Workflows und Operatoren beschreiben können. Analyseworkflows erklären können Den Zusammenhang zwischen Workflow-Tools und Analysen auf einem Big-Data-Cluster erklären können. 	X	Х	
Massiv parallele Datanbanken	 Den Aufbau und den Einsatz von massiv parallelen Datenbanken zur Datenanalyse beschreiben können. Massive Parallele Datenbanken von Big Data Systemen abgrenzen können. 	Х		
Datenströme, Ecl	htzeitfähig-keit und Deploymen	t		
Streaming und Datenanalyse	 Die Herausforderungen bei der Analyse von Datenströmen beschreiben können. Techniken zur Analyse von Datenströmen kennen. 	х		
Kopplung von Batch und Stream Processing	 Die Schritte zur Modellerstellung aus dem CRISP-Modell in die Lambda- Architektur abbilden können. Zwischen Feature-Erzeugung, Modellbildung und Modellanwendung unterscheiden und auf Batch- und Stream-Processing abbilden können. 	х	X	

Wissensgebiet	Kompetenzen (Lernziele)	ken- nen	an- wenden	beur- teilen
Deployment und Echtzeitfähigkeit	 Verfahren und Software- Lösungen zur Übertragung von Analysemodellen kennen und beschreiben können. Herausforderungen der Echtzeitfähigkeit einordnen und auf Analyse-Systeme abbilden können. 	X	Х	
Complex Event Processing	 Verfahren des Complex Event Processing kennen und in eine Big Data Analyse einordnen können. Die Aufgaben von Complex Event Processing im Kontext von Deployment von Analysemodellen beschreiben können. 	х		
Fort-geschrittene	e Analyse-methoden für Big Data	a		
Aufbau von Empfehlungs- systemen	 Aufbau und Funktionsweise der Utility Matrix im Kontext von Collaborative Filtering erklären können. Abstandsmaße kennen und anwenden können. Zerlegungen der Utility Matrix und Anwendung der Faktormatizen kennen und erklären können. Möglichkeiten und Grenzen der Parallelisierung von Collaborative Filtering kennen. 	Х	X	
Verfahren zur Modell- optimierung	 Verfahren zur Merkmalsauswahl beschreiben können. Optimierungsstrategien im Kontext von Big Data erklären können. Typische Big Data Code- Auszüge zur Modelloptimierung erklären können. Workflow-Konzepte für Machine Learning im Kontext von Big Data kennen und erklären können. 	Х	X	

ANLAGE C: »CERTIFIED DATA SCIENTIST SPECIALIZED IN BIG DATA ANALYTICS«

Wissensgebiet	Kompetenzen (Lernziele)	ken- nen	an- wenden	beur- teilen
Big Data Algorithmen	 Problematik und Herangehensweise zur Dimensionsreduktion erklären können. Beispiele von probabilistischen Algorithmen zur Dimensionsreduktion wie z.B. MinHashing kennen und erklären können 	X	X	
Datenvor- verarbeitung	 Typische Big Data Code- Auszügen zur Daten- Vorverarbeitung erklären können. Schritte der Datenvorverarbeitung anwenden können. 	Х	х	
Statistische Datenanalyse	 Typische Big Data Code- Auszüge zur Datenmodellierung erklären können. Datenmodellierungsverfahren anwenden können. 	х	х	

Der »Data Scientist Specialized in Big Data Analytics« umfasst noch keine Themenbereiche, die er zwingend beurteilen können muss.

ANLAGE D: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DATA ANALYTICS«

ANLAGE D: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DATA ANALYTICS«

- D 1 Verweis auf andere Normen und Dokumente
- EN ISO 17024

D 2 Anforderungsprofil

D 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil eines »Data Scientist Specialized in Data Analytics« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Ein zertifizierter »Data Scientist Specialized in Data Analytics«

- ist informiert über gängige Datenanalyseprozesse und wendet diese an,
- kennt Verfahren für die Transformation und Aufbereitung von Daten,
- kennt Methoden der explorativen Datenanalyse und maschinelle Lernverfahren,
- kennt gängige Strategien und Verfahren zur Bewertung von Analysen und deren Ergebnisse und
- kennt Software-Lösungen für die Aufbereitung und Analyse von Daten und kann diese einsetzen.

Abgrenzungskriterien des »Certified Data Scientist Specialized in Data Analytics« gegenüber anderen Profilen im Bereich Data Science sind im Zertifizierungshandbuch dokumentiert.

Die Bezeichnung lautet: »Certified Data Scientist Specialized in Data Analytics«

Kurzbezeichnung: »Data Analyst«

D 2.2 Zugangsvoraussetzungen

D 2.2.1 Vorbildungen

Ein zertifizierter »Data Scientist Specialized in Data Analytics« muss nachweisen:

Ein erfolgreich abgeschlossenes Studium an

- einer deutschen wissenschaftlichen Hochschule,
- einer deutschen staatlichen oder staatlich anerkannten Fachhochschule oder
- einer von der zuständigen Stelle des Landes als gleichwertig anerkannten ausländischen Hochschule

oder

- eine mindestens einjährige Tätigkeit im Zusammenhang mit der Analyse von Daten im Unternehmensumfeld etwa im Bereich Machine Learning
- oder eine mindestens einjährige Tätigkeit in Übereinstimmung mit dem Anforderungsprofil in Abschnitt D2.

Fraunhofer-Personenzertifizierungsstelle

Anmerkung:

Im zu prüfenden Einzelfall hat die antragstellende Person die Möglichkeit, fehlende Zugangsvoraussetzungen innerhalb von einem Jahr nach Ablegen der Prüfung nachzuweisen.

Der Hoch-, Fachhoch- bzw. Fachschulabschluss sowie der Nachweis der Berufserfahrung erfolgt über eine Selbstauskunft. Die Fraunhofer-Personenzertifizierungsstelle behält sich vor die Selbstauskünfte zu überprüfen. Nach Prüfung der eingereichten Unterlagen entscheidet die Fraunhofer-Personenzertifizierungsstelle über die Erfüllung der Voraussetzung. Sollten Zugangsvoraussetzungen nicht erfüllt sein, teilt die Fraunhofer-Personenzertifizierungsstelle dies dem Antragsteller unverzüglich über das Sekretariat der Fraunhofer-Personenzertifizierungsstelle mit.

Grundsätzlich kann die Fraunhofer-Personenzertifizierungsstelle in begründeten Ausnahmefällen davon abweichende Nachweise akzeptieren. Diese Nachweise und die Entscheidung der Fraunhofer-Personenzertifizierungsstelle sind zu dokumentieren.

D 2.2.2 Zusätzliche Ausbildungen und praktische Tätigkeiten

Ein »Data Scientist Specialized in Data Analytics« muss keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

D 2.2.3 Persönliche Voraussetzungen

Keine.

D 2.3 Geforderte Kompetenzen (Lernziele)

Grundlage für die Prüfung zum »Data Scientist Specialized in Data Analytics« sind folgende Kompetenzen (Lernziele):

ANLAGE D: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DATA ANALYTICS«

Wissensgebiet	Kompetenzen (Lernziele)	ken- nen	an- wenden	beur- teilen
Grundlagen der I	Datenanalyse			
Grundlagen der Daten- Modellierung	 Überwachte und unüberwachte Lernaufgaben unterscheiden können. Korrelation und Kausalität beschreiben können. Den Unterschied zwischen Korrelation und Kausalität herausstellen können. Klassifikations-, Regressionsund Clusteraufgaben unterscheiden können. Das Prozessmodell CRISP-DM und die einzelnen Phasen beschreiben können. 	х	X	
Daten- Vorverarbeitung	 Datentypen und Skalen benennen und voneinander unterscheiden können. Cleaning, Integration, Transformation, Anreicherung und Reduzierung beschreiben und wesentliche Verfahren anwenden können. Datentransformationen anwenden können. 	х	х	
Daten-analysen mit graphischen Tools	 Das Arbeiten mit Workflows und Operatoren beschreiben können. Workflows beschreiben und erklären können. Analyseworkflows erstellen können. 	X	х	
Datenanalyse mit Skript-sprachen	 Vor- und Nachteile der Datenanalyse mit grafischen Tools im Vergleich zu Skriptsprachen beschreiben können. Funktion von Code-Snippets beschreiben können. 	Х		

Wissensgebiet	Kompetenzen (Lernziele)	ken- nen	an- wenden	beur- teilen	
Grundlegende A	Grundlegende Analyse-methoden				
Visuelle Datenanalyse	 Rollen der Visualisierung in der Datenanalyse erklären können. Den Begriff der visuellen Länge kennen und erklären können. Grundlegende Visualisierungen benennen können. Visualisierungen erstellen können. Vorteile interaktiver Plots benennen können. 	х	X		
Klassifizierung	 Verfahren der Klassifizierung benennen können. Den Unterschied zwischen erklärbaren Modellen und nicht erklärbaren Modellen beschreiben und passende Verfahren benennen können. Vor- und Nachteile verschiedener Lernverfahren beschreiben können. Entscheidungsbäume erstellen können. Regeln ermitteln können. Support-Vektor-Machines vergleichen können. K-Nächste Nachbarn berechnen können. Metriken zur Evaluation von Klassifikationsmodellen anwenden können. 	X	х		
Regression	 Verfahren der Regressionsanalyse benennen können. Unterschiede zwischen Regressionsverfahren herausstellen können. Regressionsverfahren anwenden können. Metriken zur Evaluation von Regressionsmodellen ermitteln können. 	X	х		

Wissensgebiet	Kompetenzen (Lernziele)	ken- nen	an- wenden	beur- teilen
Clusteranalyse	 K-Means anwenden können. DB-SCAN anwenden können Hierarchisches Clustern anwenden können. Unterschiede von Clusterverfahren herausstellen können. Metriken zur Validierung von Clustermodellen ermitteln können. 	X	Х	
Fort-geschrittene	e Analyse-methoden			
Verfahren zur Modell- optimierung	 Bias und Varianz beschreiben können. Over- und Underfitting unterscheiden und beschreiben können. Verfahren zur Merkmalsauswahl beschreiben können. Optimierungsstrategien implementieren können. Verfahren der Kreuzvalidierung anwenden können. Gängige Ensemble-Methoden benennen können. 	X	X	
Zeitreihen- analyse Neuronale Netze	 Grundlegende Komponenten/Zerlegung einer Zeitreihe anwenden können. Autoregression erklären können. Autoregressionsmodelle erklären können. Dynamic Time Warping anwenden können. Funktionsweise eines 	X	X	
	Perceptrons beschreiben können. Aktivierungsfunktionen kennen. Komponenten von neuronalen Netzen benennen können. Eigenschaften gängiger Architekturen benennen können. Trainingsverfahren erklären können. Neuronale Netze erstellen können.			

ANLAGE D: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DATA ANALYTICS «

Wissensgebiet	Kompetenzen (Lernziele)	ken- nen	an- wenden	beur- teilen
Ausreißer- Erkennung	 Annahme und Ziel der Ausreißer-Erkennung beschreiben können. Ausreißer-Erkennung mittels grundlegender Analysemethoden anwenden können. LOF anwenden können. 	Х	х	
Daten- Vorverarbei-tung	 Erklären von typischen Code- Auszügen zur Daten- Vorverarbeitung. Schritte der Datenvorverarbeitung anwenden können. 	x	х	
Explorative Datenanalyse	 Verfahren zur explorativen Analyse benennen können. Verfahren zur explorativen Analyse anwenden können. 	х	х	
Statistische Datenanalyse	 Erklären von typischen Code- Auszügen zur Datenmodellierung. Datenmodellierungsverfahren anwenden können. 	х	х	
Modell- optimierung und -auswahl	 Erklären von typischen Code- Auszügen zur Modelloptimierung. Verfahren zur Modelloptimierung anwenden können. 	х	х	

Der »Data Scientist Specialized in Data Analytics« umfasst noch keine Themenbereiche, die er zwingend beurteilen können muss.

ANLAGE E: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DATA MANAGEMENT«

ANLAGE E: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DATA MANAGEMENT«

- E 1 Verweis auf andere Normen und Dokumente
- EN ISO 17024

E 2 Anforderungsprofil

E 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil eines »Certified Data Scientist Specialized in Data Management« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Ein zertifizierter »Data Scientist Specialized in Data Management«

- ist informiert über gute Datenmanagement-Praxis und setzt diese um,
- ist informiert über alle Ebenen der Datenmanagement Wertschöpfungskette,
- kennt Prozeduren für die Beschreibung, Transformation und qualitative Aufbereitung von Daten,
- kennt Software für das Management von Daten,
- kennt Verfahren zur statistischen und visuellen Datenanalyse und
- verfasst Anweisungen, Richtlinien und Pläne für ein nachhaltiges Datenmanagement in einer Organisation.

Abgrenzungskriterien des »Certified Data Scientist Specialized in Data Management« gegenüber anderen Profilen im Bereich Data Science sind im Zertifizierungshandbuch dokumentiert.

Die Bezeichnung lautet: »Certified Data Scientist Specialized in Data Management« Kurzbezeichnung: »Data Manager«

E 2.2 Zugangsvoraussetzungen

E 2.2.1 Vorbildungen

Ein zertifizierter »Data Scientist Specialized in Data Management« muss nachweisen:

Ein erfolgreich abgeschlossenes Studium an

- einer deutschen wissenschaftlichen Hochschule,
- einer deutschen staatlichen oder staatlich anerkannten Fachhochschule oder
- einer von der zuständigen Stelle des Landes als gleichwertig anerkannten ausländischen Hochschule

oder

■ eine mindestens einjährige Tätigkeit im Zusammenhang mit der Analyse von Daten im Unternehmensumfeld etwa im Bereich Business Intelligence

Fraunhofer-Personenzertifizierungsstelle Zertifizierungshandbuch (Rev. 29) Data Science Gültig ab 20/05/2025

51 | 161

■ oder eine mindestens einjährige Tätigkeit in Übereinstimmung mit dem Anforderungsprofil in Abschnitt E2.

Anmerkung:

Im zu prüfenden Einzelfall hat die antragstellende Person die Möglichkeit, fehlende Zugangsvoraussetzungen innerhalb von einem Jahr nach Ablegen der Prüfung nachzuweisen.

Der Hoch-, Fachhoch- bzw. Fachschulabschluss sowie der Nachweis der Berufserfahrung erfolgt über eine Selbstauskunft. Die Fraunhofer-Personenzertifizierungsstelle behält sich vor die Selbstauskünfte zu überprüfen. Nach Prüfung der eingereichten Unterlagen entscheidet die Fraunhofer-Personenzertifizierungsstelle über die Erfüllung der Voraussetzung. Sollten Zugangsvoraussetzungen nicht erfüllt sein, teilt die Fraunhofer-Personenzertifizierungsstelle dies dem Antragsteller unverzüglich über das Sekretariat der Fraunhofer-Personenzertifizierungsstelle mit.

Grundsätzlich kann die Fraunhofer-Personenzertifizierungsstelle in begründeten Ausnahmefällen davon abweichende Nachweise akzeptieren. Diese Nachweise und die Entscheidung der Fraunhofer-Personenzertifizierungsstelle sind zu dokumentieren.

E 2.2.2 Zusätzliche Ausbildungen und praktische Tätigkeiten

Ein »Certified Data Scientist Specialized in Data Management« muss keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

E 2.2.3 Persönliche Voraussetzungen

Keine.

E 2.3 Geforderte Kompetenzen (Lernziele)

Grundlage für die Prüfung zum »Certified Data Scientist Specialized in Data Management« sind folgende Kompetenzen (Lernziele):

ANLAGE E: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DATA MANAGEMENT«

Themen- bereich	Kompetenzen (Lernziele)	ken- nen	an- wenden	beur- teilen
Metadata Manag	gement			
Modellierung von Daten und Metadaten	 UML-Klassendiagramme vervollständigen können. Verschiedene Modellierungsmethoden nennen und kurz erklären können. 	х	х	
	 Beschreiben können, welche Vorteile die Verwendung von Metadaten-Standards hat. Die Vollständigkeit von konzeptuellen Datenmodellen in Bezug auf die Lösung eines Geschäftsproblems beurteilen können. 	X	X	
Semantische Daten- beschreibung	 Beschreiben können, wie man ein Datenmodell (Schema) mit Standards annotiert. Unterschied von »klassischem« Web der Dokumente zum Semantic Web (Web der Daten) darstellen können. Das RDF-Datenmodell erklären können Vorteile und Grenzen von Vokabularien und Ontologien nennen können. Unterschied zwischen Vokabularien und Ontologien anhand von Beispielen aus verschiedenen Forschungsbereichen darstellen können. Beschreiben können, wie man Ontologien zur Annotation von Daten und Datenmodellen nutzen kann Grundlagen des Semantic Web und Linked Open Data nennen können 	X		

Themen- bereich	Kompetenzen (Lernziele)	ken- nen	an- wenden	beur- teilen
Metadaten- Extraktion	 Vorgehensweisen für die Extraktion von Metadaten aus Dateien und Informationssystemen beschreiben können. Beschreiben können, was ein regulärer Ausdruck ist und wie er für die Extraktion von Metadaten verwendet werden kann. Vor- und Nachteile für die Kodierung von Metadaten in Dateinamen benennen können und mit der strukturierten Ablage von Metadaten vergleichen können. Vorgehensweise für die Metadatenextraktion mit einem Datenintegrationswerkzeug (wie KNIME) umsetzen können. Vor- und Nachteile unterschiedlicher Vorgehensweisen der strukturierten Metadatenablage bewerten (beurteilen) können. 	X	X	
	ent Architekturen			
Datenbank- Management- Systeme	 Die Architektur von Data Warehouse- und Data Lake- Systemen beschreiben können. Die Ziele eines Data Lakes beschreiben können. Die Unterschiede von relationalen Datenbanksystemen und NoSQL Datenbanksystemen beschreiben können. Die grundsätzlichen Eigenschaften von NoSQL-Datenbanksystemen erklären können. Geeignete Anwendungsgebiete von relationalen und NoSQL-Datenbankmanagement-Systemen beurteilen können. 	X	X	

Themen-	Kompetenzen (Lernziele)	ken-	an-	beur-
bereich Data Lakes	 Verschiedene Werkzeuge für die Data Ingestion nach ihren Einsatzgebieten kategorisieren können. Vorgehensweisen für die Data Ingestion von Rohdaten mit einem Datenintegrationswerkzeug (wie KNIME) umsetzen können. Vor- und Nachteile einer Data Ingestion von Rohdaten in 	x	x	teilen
Daten-abfragen	einem Data Lake unterscheiden können. Den Unterschied zwischen XML- und JSON- Dokumenten erklären können. Methoden für die Abfrage von Daten aus XML- und JSON- Dokumenten benennen können. Einfache SQL-Abfragen interpretieren können. Einfache Abfragen für dokumenten-orientierte NoSQL-Systeme interpretieren können. Darstellen können, wie verschiedene Abfragekonzepte in unterschiedlichen Datenbanktypen abgebildet werden. Einfache Abfragen in der Abfragesprache von MongoDB formulieren können. Einfache Abfragen mit SQL formulieren können	X	X	
Data Integration Grundlagen der	Den Unterschied zwischen	х		
Datenintegration	materialisierter und virtueller Datenintegration beschreiben können. Grundlegende Operationen der Datenintegration beschreiben und in einem einfachen Beispiel anwenden können.	х	x	

ANLAGE E: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DATA MANAGEMENT«

Themen- bereich	Kompetenzen (Lernziele)	ken- nen	an- wenden	beur- teilen
Daten- aufbereitung	 Verfahren der Datenaufbereitung benennen können. Den Bedarf für die Harmonisierung von Daten erkennen können und erklären können wie diese durchgeführt wird. Vorgehensweise (Prozess) zur Überprüfung von Daten auf Fehlerfreiheit darstellen können. Die wichtigsten Verfahren/Methoden zur Erkennung von fehlerhaften Daten benennen und auf unterschiedliche Datentypen anwenden können. Die Grenzen zur Überprüfung von Daten auf mögliche Fehlerhaftigkeit benennen können. 	Х	X	
	 Vor/Nachteile von rein berechneten Verfahren (z.B. über statistische Größen) versus a priori Wissen zur Bereinigung von Datensätzen an Beispielen von Experimentaldaten darstellen können. 	X	х	
Dateninterpretat	ion			
Visuelle Datenanalyse (VA)	 Anwendung der VA benennen und beschreiben können. Grafische Darstellung verschiedener Datentypen zur qualitativen Beurteilung von Datensätzen einsetzen können. Am Beispiel einer Fragestellung eine geeignete Visualisierungsart auswählen und die Auswahl begründen können. 	X	х	
Statistische Datenanalyse	 Den Unterschied zwischen Korrelation und Kausalität erklären können. 	х	Х	

Themen- bereich	Kompetenzen (Lernziele)	ken- nen	an- wenden	beur- teilen
Vor- und Nachteile der VA bzw. statistischer Methoden	 Grenzen der VA und der statistischen Datenanalyse erklären können. 	Х	X	
Data Governance	•			
Grundlagen der Data Governance	 Aufgaben der Data Governance beschreiben können. Die wesentlichen Phasen in einem Data Mining Projekt beschreiben und miteinander in Beziehung setzen können. Die Hauptphasen des CRISP modellieren können. Den Begriff und einzelne Phasen des Data Life Cycle erklären können. Abweichungen vom typischen Lebenszyklus für Forschungsdaten benennen können. 	Х	X	
Daten- management- Planung	 Risiken im Datenmanagement anhand eines Szenarios identifizieren können und korrigierende Maßnahmen beschreiben können. Vorteile von Datenmanagement Plänen benennen können. Richtlinien für das Datenmanagement verfassen können. 	Х	X	
Daten- management budgetieren	 Beschreiben können, wie Ressourcen für das Datenmanagement geplant werden sollten. Kostenstrukturen verschiedener Datenmanagement-Systeme nennen können. 	Х	X	

ANLAGE E: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DATA MANAGEMENT«

Der »Certified Data Scientist Specialized in Data Management« umfasst noch keine Themenbereiche, die er zwingend beurteilen können muss.

ANLAGE F: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DATA QUALITY AND DATA PREPROCESSING«

- F 1 Verweis auf andere Normen und Dokumente
- EN ISO 17024

F 2 Anforderungsprofil

F 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil eines »Certified Data Scientist Specialized in Data Quality and Data Preprocessing« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Ein zertifizierter »Data Scientist Specialized in Data Quality and Data Preprocessing«

- kennt die Eigenschaften von strukturierten Daten und Bilddaten und kann Gemeinsamkeiten und Unterschiede beschreiben,
- kann Datenqualitätsmerkmale benennen,
- kann den Zusammenhang zwischen der Datenqualität und der Ergebnisgüte der Datenanalyse sowie der datengetriebenen Modellbildung erläutern,
- kann darlegen, wie sich die Themen Datenqualität und Datenvorverarbeitung in den Prozess des maschinellen Lernens einbetten,
- kann die zentralen Schritte der Vorverarbeitung der Daten für eine anschließende Modellierung mittels maschinellen Lernens erklären,
- kann Anforderungen an die Datenqualität formulieren und entsprechende Datenvorverarbeitungsmethoden wählen,
- kann einen umfassenden Werkzeugkasten an Datenvorverarbeitungsmethoden zur Qualitätssteigerung bei strukturierten Daten und Bilddaten anwenden und
- kann erläutern, wie sich Datenqualität im Kontext des maschinellen Lernens messen und langfristig sicherstellen und erhöhen lässt.

Abgrenzungskriterien des »Certified Data Scientist Specialized in Data Quality and Data Preprocessing« gegenüber anderen Profilen im Bereich Data Science sind im Zertifizierungshandbuch dokumentiert.

Die Bezeichnung lautet: »Certified Data Scientist Specialized in Data Quality and Data Preprocessing«

Kurzbezeichnung: »Specialist in Data Quality«

F 2.2 Zugangsvoraussetzungen

F 2.2.1 Vorbildungen

Ein zertifizierter »Certified Data Scientist Specialized in Data Quality and Data Preprocessing« muss nachweisen:

Ein erfolgreich abgeschlossenes Studium an

■ einer deutschen wissenschaftlichen Hochschule,

- einer deutschen staatlichen oder staatlich anerkannten Fachhochschule oder
- einer von der zuständigen Stelle des Landes als gleichwertig anerkannten ausländischen Hochschule

ANLAGE F: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DATA QUALITY AND DATA PREPROCESSING«

oder

- eine mindestens einjährige Tätigkeit im Zusammenhang mit der Analyse von Daten im Unternehmensumfeld etwa im Bereich Data Quality und Data Preprocessing
- oder eine mindestens einjährige Tätigkeit in Übereinstimmung mit dem Anforderungsprofil in Abschnitt F2.

Nachweis der Zulassungsvoraussetzungen:

Der Hoch-, Fachhoch- bzw. Fachschulabschluss wird nachgewiesen durch eine Kopie der Urkunde. Der Nachweis der Berufserfahrung sowie der zusätzlich geforderten Kenntnisse erfolgen durch die Bescheinigung des Arbeitgebers oder bei Selbstständigen durch eine eidesstattliche Erklärung.

Die Fraunhofer-Personenzertifizierungsstelle behält sich vor die Nachweise zu überprüfen. Nach Prüfung der eingereichten Unterlagen entscheidet die Fraunhofer-Personenzertifizierungsstelle über die Erfüllung der Voraussetzung. Sollten Zugangsvoraussetzungen nicht erfüllt sein, teilt die Fraunhofer-Personenzertifizierungsstelle dies dem Antragsteller unverzüglich über das Sekretariat der Fraunhofer-Personenzertifizierungsstelle mit.

Grundsätzlich kann die Fraunhofer-Personenzertifizierungsstelle in begründeten Ausnahmefällen davon abweichende Nachweise akzeptieren. Diese Nachweise und die Entscheidung der Fraunhofer-Personenzertifizierungsstelle sind zu dokumentieren.

Anmerkung:

Im zu prüfenden Einzelfall hat die antragstellende Person die Möglichkeit, fehlende Zugangsvoraussetzungen innerhalb von einem Jahr nach Ablegen der Prüfung nachzuweisen

F 2.2.2 Zusätzliche Ausbildungen und praktische Anforderungen

Ein »Certified Data Scientist Specialized in Data Quality and Data Preprocessing« muss keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

F 2.2.3 Persönliche Voraussetzungen

Keine.

F 2.3 Geforderte Kompetenzen (Lernziele)

Folgende Kompetenzen werden für die Zertifizierung "Data Quality and Data Preprocessing" gefordert

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden
Grundlagen der Datenguali	tät und Datenvorverarbeitung	_	Wenden
Cranalagen der Datenquan		,	
Dimensionen der Datenqualität	 Dimensionen der Datenqualität nach ISO/IEC 25012 nennen können. Die fünf Dimensionen der inhärenten Datenqualität (Genauigkeit, Vollständigkeit, Konistenz, Glaubwürdigkeit, 	X	
	Aktualität) nennen und voneinander abgrenzen können.		
Datenvorverarbeitung als Teil des Data Mining	•Prozessmodelle des Data Mining (KDD, SEMMA, CRISP-DM) nennen und voneinander abgrenzen können.	X	
Tabulare und Bilddaten	•Grundlegende Gemeinsamkeiten und Unterschiede von tabularen und Bilddaten erläutern können.	X	
Machine Learning (ML)	 Überwachtes und unüberwachtes Lernen erklären können. Metriken für die Bewertung der Lernaufgaben (Klassifizierung, Regression und Segmentation) des überwachten Lernens nennen und unterscheiden können. 	X	
Frameworks für praktische Anwendung	•Die Vorteile der Verwendung von Python für die Datenanalyse nennen können.	Х	
Datenqualitätscheck & Anno	otation		
Eigenschaften von strukturierten Daten und Attributen	 Probleme der Datenqualität (z.B. fehlende Werte) nennen und erklären können. Datentypen und Skalen benennen und voneinander unterscheiden können. Verteilungen von Daten unterscheiden und in einfachen Beispielen anwenden können (z.B. binomial, normal). 	X	X

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden
Maße für Lageparameter, Streuung und Korrelationsanalyse	 Lageparameter und Streuungen unterscheiden und anwenden können (z. B. Mittelwert, Median, Schiefe). Korrelationsansätze unterscheiden & anwenden können. 	х	x
Bilddaten	 Mathematische Repräsentation von Bildern und Bilddatensätzen als Tensoren beschreiben können (Höhe, Breite, Kanäle, Bilder). 	х	
Bildformate und Farbmodelle	Die unterschiedlichen Bildformate und Farbmodelle nennen und ineinander überführen können (z.B. Graustufe, oder RGB).	х	x
Annotation	Vorgehen der Annotation von strukturierten Daten nennen können. Unterschiedliche Formen der Bildannotation (z.B. Segmentierung) in Abhängigkeit der Lernaufgabe verstehen und erklären können.	Х	
Datenintegration & Synchro	_		
Datenintegration	 Physische und logische Datenintegration unterscheiden und erklären können. Zeitreihendaten von crosssektionalen Daten unterscheiden können. 	x	
Extract Transform Load (ETL)-Prozesse	ETL und Extract Load Transform (ELT)-Prozesse unterscheiden können. Zweck und Hauptschritte der ETL-Prozesse beschreiben und die Vorgehensweise umsetzen können.	х	х
Synchronisierung von Zeitreihendaten	•Methoden zur Synchronisation von Zeitreihendaten nennen und anwenden können.	х	х
Data Cleaning			1
Formen und Behandeln fehlender Werte	 ◆Formen von fehlenden Daten erklären können. ◆Verschiedene Methoden zur Behandlung von fehlenden Daten erklären und anwenden können (z.B. 	х	X

ANLAGE F: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DATA QUALITY AND DATA PREPROCESSING«

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden
	Ignorieren, Löschen, Imputieren fehlender Werte).		- Weildell
Formen, Erkennen und Behandeln von Ausreißern	 Formen von Ausreißern beschreiben können. Methoden zur Erkennung und Behandlung von Ausreißern unterscheiden und umsetzen können. 	х	x
Formen und Behandeln von Rauschen	 ◆Formen von Rauschen unterscheiden können. ◆Methoden zur Behandlung von Rauschen erklären und verwenden können (z. B. Deduplizierung, Entfernen von konstanten Werten). 	х	х
Data Transformation			_
Datenkodierung (Data Encoding)	 Unterschiedliche Datenskalen nennen können. Methoden zur Konversion von kategorischen in numerische Daten beschreiben und anwenden können. 	х	х
Normalisierung durch Skalieren von Attributen und Behandeln von Schiefe	 Zweck von Datennormalisierung beschreiben können. Vor- und Nachteile von Normalisierung nennen können. Skalierung und Schiefenbehandlung erklären und unterscheiden können. Datenskalierungsmethoden nennen und anwenden können. Methoden zur Behandlung der Schiefe nennen können. 	X	X
Diskretisierung (Discretization)	 Zweck der Datendiskretisierung erklären können. Die vier Kernschritte von Diskretisierung benennen können. Data Binning, statistische und informationsgestützte Auswertungsmethoden klassifizieren können. 	х	
Bild-Transformation zur Standardisierung	 Den Zweck der Bildtransformation erklären können. Unterschiedliche Arten der Operationen für die 	х	х

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden
	Bildformatierung nennen und anwenden können (z. B. Resizing).		
Normalisierung und Standardisierung von Bilddaten	 Den Zweck von Normalisierung erklären können. Normalisierung und Standardisierung beschreiben und anwenden können. 	x	x
Rauschreduktion bzw entfernung von Bildern	 Den Zweck der Rauschreduktion erklären können. Unterschiedliche Filtermethoden benennen und anwenden können (Median filtering). 	x	x
Datenreduktion			
Dimensionalitätsreduzier ung (Dimensionality Reduction)	 Zweck von Datenreduktion darstellen können. Methoden für Datenreduktion unterscheiden und verwenden können. 	х	x
Attributauswahl (Feature Selection)	 Den Unterschied zur Dimensionalitätsreduzierung erklären können. Methoden für die Attributauswahl erklären und verwenden können. 	х	х
Instanzauswahl (Instance Selection)	 Das Konzept der Instanzauswahl beschreiben können. Methoden für die Instanzauswahl nennen können. 	х	
Dimensionsreduktion von Bildern	 Den Zweck von Bildtransformation und Dimensionsreduktion erklären können. Bildtransformationen anwenden können. Dimensionsreduktion (bspw. Cropping) anwenden können. 	х	х
Datenaugmentation, Featu	re Engineering and Data Balar	ncing	
Daten-Augmentation	 Den Zweck und das Konzept hinter Datenaugmentation nennen können. Methoden der Datenaugmentation beschreiben können (tabular & Bilder). 	х	x

ANLAGE F: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DATA QUALITY AND DATA PREPROCESSING«

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden
Feature Engineering	 Zweck von Features Engineering für tabulare und Bilddaten beschreiben können. Methoden für Feature Engineering (kontextabhängig, bezogen 	x	Welldell
Data Balancing	auf Zeitreihen) nennen können (tabular und Bilder). •Den Zweck von Data Balancing erklären können. •Methoden für das Data	x	X
Bewertung der Datenqualit	Balacning beschreiben und anwenden können.		
Messung der Datenqualität	•Zweck und Verfahren der Bestimmung der Datenqualität nennen können. •Indikatoren von Datenqualität nennen können.	X	
Anwendung des Machine Learning	 Die vier Subphasen der Modellierung benennen können. ML Algorithmen für tabulare Daten benennen können. Baumbasierte Modelle erklären und anwenden können. 	Х	Х
Vergleichende Analyse von Vorverarbeitungsmethod en	•Einfluss der Datenvorverarbeitungsmetho den auf die Performanz der Machine Learning Modelle erklären können.	X	
Bilderkennungs- und verarbeitungs- Aufgaben	•Unterschiedliche Bildverarbeitungsaufgaben nennen und erläutern können.	X	
Anwendung des Deep Learnings auf Bilddaten	 Unterschiede zwischen konventionellen Machine Learning Methoden und Deep Learning Ansätzen erläutern können. Merkmalsextraktion mithilfe von Bildtransformationen nennen und anwenden können. Anforderungen an die Bildrepräsentation zwischen Machine Learning und Deep Learning erläutern können. 	X	X

Wissensgebiet	Kompetenzen/Lernziele	ken-	an-
		nen	wenden
	●Bilder in Vektoren für		
	Verarbeitung mit Machine		
	Learning Algorithmen		
	transformieren können.		
	•Tiefe künstliche neuronale		
	Netzwerke für das Bewertung		
	des Analyseergebnisses		
	interpretieren können.		

Anlage F: »Certified data Scientist specialized in data Quality and data Preprocessing«

ANLAGE G: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DEEP LEARNING & GENERATIVE AI «

G 1 Verweis auf andere Normen und Dokumente

■ EN ISO 17024

G 2 Anforderungsprofil

G 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil eines »Data Scientist Specialized in Deep Learning & Generative Al« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Ein zertifizierter »Data Scientist Specialized in Deep Learning & Generative Al«

- kennt die Grundlagen und Methoden des Deep Learning und wendet diese exemplarisch an,
- kennt die Grundlagen des Designs und Trainings tiefer neuronaler Netze (Deep Learning) und wendet diese an,
- kennt und wendet die theoretischen Grundlagen exemplarisch an von
 - Faltungsnetzen (Convolutional Neural Netwoks [CNN])
 - Rekurrenten neuronalen Netzen [RNN]
 - Generativen neuronalen Netzen [GAN]
 - Reinforcement Learning
 - Unüberwachten Lernansätzen
 - Transformer-basierten Modellen (BERT, GPT, Transformer)
 - Foundation Modelle zur Transformation eines Mediums in ein anderes (z. B. Text nach Bild) an und
- kennt die Prinzipien und Methoden seines Vertiefungsbereichs und setzt sie exemplarisch um.

Abgrenzungskriterien des »Certified Data Scientist Specialized in Deep Learning & Generative Al« gegenüber anderen Profilen im Bereich Data Science sind im Zertifizierungshandbuch dokumentiert.

Die Bezeichnung lautet: »Certified Data Scientist Specialized in Deep Learning &

Generative Al«

Kurzbezeichnung: »Specialist Deep Learning & Generative Al«

G 2.2 Zugangsvoraussetzungen

G 2.2.1 Vorbildungen

Ein zertifizierter »Data Scientist Specialized in Deep Learning & Generative Al « muss nachweisen:

Ein erfolgreich abgeschlossenes Studium an

■ einer deutschen wissenschaftlichen Hochschule,

- einer deutschen staatlichen oder staatlich anerkannten Fachhochschule oder
- einer von der zuständigen Stelle des Landes als gleichwertig anerkannten ausländischen Hochschule

ANLAGE G: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DEEP LEARNING & GENERATIVE AI «

oder

- eine mindestens einjährige Tätigkeit im Zusammenhang mit der Analyse von Daten im Unternehmensumfeld etwa im Bereich Deep Learning
- oder eine mindestens einjährige Tätigkeit in Übereinstimmung mit dem Anforderungsprofil in Abschnitt G2.

Nachweis der Zulassungsvoraussetzungen:

Der Hoch-, Fachhoch- bzw. Fachschulabschluss wird nachgewiesen durch eine Kopie der Urkunde. Der Nachweis der Berufserfahrung sowie der zusätzlich geforderten Kenntnisse erfolgt durch die Bescheinigung des Arbeitgebers oder bei Selbstständigen durch eine eidesstattliche Erklärung.

Die Fraunhofer-Personenzertifizierungsstelle behält sich vor die Nachweise zu überprüfen. Nach Prüfung der eingereichten Unterlagen entscheidet die Fraunhofer-Personenzertifizierungsstelle über die Erfüllung der Voraussetzung. Sollten Zugangsvoraussetzungen nicht erfüllt sein, teilt die Fraunhofer-Personenzertifizierungsstelle dies dem Antragsteller unverzüglich über das Sekretariat der Fraunhofer-Personenzertifizierungsstelle mit.

Grundsätzlich kann die Fraunhofer-Personenzertifizierungsstelle in begründeten Ausnahmefällen davon abweichende Nachweise akzeptieren. Diese Nachweise und die Entscheidung der Fraunhofer-Personenzertifizierungsstelle sind zu dokumentieren.

Anmerkung:

Im zu prüfenden Einzelfall hat die antragstellende Person die Möglichkeit, fehlende Zugangsvoraussetzungen innerhalb von einem Jahr nach Ablegen der Prüfung nachzuweisen

G 2.2.2 Zusätzliche Ausbildungen und praktische Anforderungen

Ein »Certified Data Scientist Specialized in Deep Learning & Generative Al« muss keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

G 2.2.3 Persönliche Voraussetzungen

Keine.

G 2.3 Geforderte Kompetenzen (Lernziele)

Ein »Data Scientist Specialized in Deep Learning & Generative Al« muss folgende Kompetenzen nachgewiesen:

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
Maschinelles Lernen	Maschinelles Lernen und dessen unterschiedlichen Arten erläutern können.	х		
	Grundlagen zur Evaluierung von Modellen (Kreuzvalidierung) und zugehörige Maße (Genauigkeit, Precision, Recall, AUC) erläutern können.	х		
	Begriffe wie Probabilistische Modelle, Maximum Likelihood, Overfitting oder Regularisierung erklären können.	х		
	verschiedene Methoden wie z.B. Hyperparameter-Optimierung, Ensemblemethoden anwenden können.		х	
Programmieren	Die grundlegende Architektur eines aktuellen Deep Learning Toolkits nennen können	Х		
	einen Überblick über aktuelle ML Toolkits (Tensorflow, PyTorch,)) geben und deren Vor- und Nachteile für praktische Anwendungen beurteilen können.		Х	
	den grundlegenden Ablauf des Modelltrainings (Einlesen, Vorverarbeitung, Optimierung, Modell speichern) erläutern können.	х		
	den grundlegenden Ablauf der Modellanwendung (Einlesen, Vorverarbeitung, Modell laden, Modell anwenden) erläutern können.	X		

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
	die Möglichkeiten zur parallelen Ausführung von Machine Learning Algorithmen nennen können.	х		
	Quellcode eines aktuellen Deep Learning Frameworks lesen können.		х	
	Code zur Darstellung eines Tiefen Neuronalen Netzens selbständig erweitern können.		х	
	Code zur Darstellung eines Tiefen Neuronalen Netzes debuggen können.		Х	
	eigene Daten für ein Deep Learning Framework zugänglich machen können.		X	
	einfache, eigene Deep Learning Projekte konzipieren und umsetzen können.		Х	
Deep Learning Grundlagen	die Kernkomponenten und Strukturen neuronaler Netze benennen können.	Х		
	Backpropagation als verbreitetes Verfahren für das Trainieren künstlicher neuronaler Netze beschreiben können. (trainieren)	х		
	SGD (stochastic gradient descent) und dessen Varianten wie (Averaging, AdaGrad, RMSProp, Adam usw.) beschreiben können.	Х		
	den Unterschied zwischen Deep und Shallow Learning erklären können.		Х	
	typische Architekturen wie CNN, RNN, BERT, Al, GAN und Transformer. erklären können.	х		
	einer gegebenen Fragestellung eine Grundarchitektur zuordnen können.	Х	Х	

ANLAGE G: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DEEP LEARNING & GENERATIVE AI «

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
	zu einer gegebenen Fragestellung Komplexität und Bedarf an Daten abschätzen können.		X	
	Möglichkeiten zur gleichzeitigen Verarbeitung heterogener Datentypen erläutern können.	х		
	mögliche Grenzen der Anwendung von Maschinellen Lernverfahren erläutern können.	X		
	Die Begriffe Underfitting und Overfitting erklären können	Х		
	Einige Methoden der Regularisierung beschreiben können	х		
	Schwierigkeiten und Hindernisse des Trainings eines Neuronalen Netzes verstehen und Lösungsansätze vorschlagen können	х		
Grundlagen Unüberwachtes	die Aufgaben von Embeddings erklären können.	Х		
Lernen	Embedding-Architekturen (Word2vec, BERT) beschreiben können.	x		
	Anwendungsszenarien für Embeddings erläutern können.	Х		
	Beispiele von Embedding- Modellen für einfache Textanalyseanwendungen nennen können.	х		
	Die Notwendigkeit von kontext- sensitiven Embeddings erklären können	х		
	Die Architektur von BERT erklären können	Х		
	Das Konzept des Transferlernens mit Pretraining und Feintuning erklären können	х		
	Aufgaben der Informationsextraktion benennen können	х		

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
Grundlagen Image Recognition	die theoretischen Grundlagen von Convolutional Neural Networks (CNNs) wie Faltung und Weight Sharing erklären können.	Х		
	Anwendungsszenarien für CNNs benennen können	X		
	moderne CNN-Architekturen aufzählen können.	Х		
	moderne CNN-Architekturen auf Bilddaten anwenden können (z.B. AlexNet, InceptionNets, ResNet, Fully Convolutional Netz).		х	
	CNN für einfache Bildverarbeitungsanwendungen nennen (Beispiele), entwerfen und in einen Deep Learning Framework umsetzen können.		х	
	Text-to-Image als Erweiterung von AI beschreiben	Х		
	Funktionsprinzip von Diffusion Modellen erklären können	Х		
	Die Aufgabe der semantischen Segmentierung beschreiben können	Х		
Grundlagen Generierung von Text Sequenzen	die theoretischen Grundlagen von Rekurrenten Neuronalen Netzen (RNNs) erklären können.	Х		
	Anwendungsszenarien für RNNs (z.B. Sprachmodelle <u>und</u> <u>Informationsextraktion</u>) erklären können.	х		
	moderne RNN-Architekturen auf Textdaten anwenden können (Embeddings, Noise Contrastive Estimation).		Х	
	RNNs für einfache Textanalyseanwendungen entwerfen und in einen Deep Learning Framework umsetzen können.		x	

ANLAGE G: »CERTIFIED DATA SCIENTIST SPECIALIZED IN DEEP LEARNING & GENERATIVE AI «

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
	Die Architektur von Al-Modellen kennen	х		
	Den Vorgang der Texterzeugung mit Hilfe von Al- Modellen beschreiben können	Х		
	Das Prinzip des Few-Shot Lernens darstellen können	Х		
	Anwendungsszenarien für Zeitreihenanalyse benennen können	X		
	Methoden der Zeitreihenanalyse nennen können	X		
Sequence to Sequence Modelle	Die Aufgabe der Maschinellen Übersetzung beschreiben können	х		
	Die Architektur des RNN Sequence-tosequence Modells beschreiben können	X		
	Den Vorgang der Erzeugung einer Übersetzung beschreiben können	Х		
	Die Architektur des Transformer-Encoder-Decoders beschreiben können		X	
Grundlagen Generative Adversarial Models	die Funktionsweise von GAN (Generative Adversarial Network) erläutern können.	X		
	Anwendungsszenarien für GANs benennen können.	Х		
	Die an Al angelehnte Architektur von DALL-E 1 erläutern können	X		
	Das Konzept der Foundation Modelle erläutern können		Х	
Grundlagen Reinforcement Learning	die theoretischen Grundlagen von RL wie Q-Learning und Policy Optimization erläutern können.	х		
	ein einfaches Beispiel adaptieren und anwenden können.		х	

ANLAGE H: »CERTIFIED DATA SCIENTIST SPECIALIZED IN MACHINE DATA ANALYTICS«

ANLAGE H: »CERTIFIED DATA SCIENTIST SPECIALIZED IN MACHINE DATA ANALYTICS«

- H 1 Verweis auf andere Normen und Dokumente
- EN ISO 17024

H 2 Anforderungsprofil

H 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil eines »Data Scientist Specialized in Machine Data Analytics« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Der »Data Scientist Specialized in Machine Data Analytics« beschäftigt sich insbesondere mit der konkreten technischen Analyse und der ingenieursmäßigen Evaluierung vorliegender Sensor- und Simulationsdaten von Maschinen und Anlagen.

Ein zertifizierter »Data Scientist Specialized in Machine Data Analytics«

- kennt die Vor- und Nachteile einer (semi-)automatisierten Zustandsüberwachung und der prädiktiven Wartung einer industriellen Anlage,
- kennt die grundlegende Sensorik, um eine geeignete Datenerhebung im industriellen Umfeld zu ermöglichen,
- kennt Verfahren zur Ereigniszeitanalyse und kann diese sinnvoll einsetzen,
- kennt Methoden der Signalverarbeitung und Fourieranalyse zur Erstellung geeigneter spektraler Features aus Zeitreihen von Sensordaten,
- kann geeignete Clustering- und Dimensionsreduktionsmethoden zur Analyse von Maschinendaten identifizieren, konfigurieren und anwenden und
- kennt die Vorgehensweise zur Anomaliedetektion in Sensordaten und kann diese erfolgreich anwenden.

Abgrenzungskriterien des »Certified Data Scientist Specialized in Machine Data Analytics« gegenüber anderen Profilen im Bereich Data Science sind im Zertifizierungshandbuch dokumentiert.

Die Bezeichnung lautet: »Certified Data Scientist Specialized in Machine Data Analytics«

H 2.2 Zugangsvoraussetzungen

H 2.2.1 Vorbildungen

Ein zertifizierter »Data Scientist Specialized in Machine Data Analytics« muss nachweisen:

Ein erfolgreich abgeschlossenes Studium an

- einer deutschen wissenschaftlichen Hochschule,
- einer deutschen staatlichen oder staatlich anerkannten Fachhochschule oder
- einer von der zuständigen Stelle des Landes als gleichwertig anerkannten ausländischen Hochschule

oder

- eine mindestens einjährige Tätigkeit im Zusammenhang mit der Analyse von Daten im Unternehmensumfeld etwa im Bereich Machine Data Analytics.
- oder eine mindestens einjährige Tätigkeit in Übereinstimmung mit dem Anforderungsprofil in Abschnitt H 2.

Nachweis der Zulassungsvoraussetzungen:

Der Hoch-, Fachhoch- bzw. Fachschulabschluss wird nachgewiesen durch eine Kopie der Urkunde. Der Nachweis der Berufserfahrung sowie der zusätzlich geforderten Kenntnisse erfolgen durch die Bescheinigung des Arbeitgebers oder bei Selbstständigen durch eine eidesstattliche Erklärung.

Die Fraunhofer-Personenzertifizierungsstelle behält sich vor die Nachweise zu überprüfen. Nach Prüfung der eingereichten Unterlagen entscheidet die Fraunhofer-Personenzertifizierungsstelle über die Erfüllung der Voraussetzung. Sollten Zugangsvoraussetzungen nicht erfüllt sein, teilt die Fraunhofer-Personenzertifizierungsstelle dies dem Antragsteller unverzüglich über das Sekretariat der Fraunhofer-Personenzertifizierungsstelle mit.

Grundsätzlich kann die Fraunhofer-Personenzertifizierungsstelle in begründeten Ausnahmefällen davon abweichende Nachweise akzeptieren. Diese Nachweise und die Entscheidung der Fraunhofer-Personenzertifizierungsstelle sind zu dokumentieren.

Anmerkung:

Im zu prüfenden Einzelfall hat die antragstellende Person die Möglichkeit, fehlende Zugangsvoraussetzungen innerhalb von einem Jahr nach Ablegen der Prüfung nachzuweisen.

H 2.2.2 Zusätzliche Ausbildungen und praktische Anforderungen

Ein »Certified Data Scientist Specialized in Machine Data Analytics« muss keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

H 2.2.3 Persönliche Voraussetzungen

H 2.3 Geforderte Kompetenzen (Lernziele)

Die Grundlage für die Prüfung zum »Data Scientist Specialized in Machine Data Analytics« sind ausschließlich die folgenden aufgeführten Kompetenzen (Lernziele) im Bereich »Maschinendatenanalyse« und müssen durch eine schriftliche Prüfung nachgewiesen werden:

ANLAGE H: »CERTIFIED DATA SCIENTIST SPECIALIZED IN MACHINE DATA ANALYTICS«

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
Grundlagen Data Science für Maschinendaten	Use Cases aus dem Bereich der Maschinendatenanalyse beschreiben können.	Х	
	Phasen des CRISP DM Zyklus im Kontext der Maschinendatenanalyse beschreiben können.	Х	
	Verschiedene Instandhaltungsstrategien für Anlagen zusammenfassen können (z. B. präventiv, reaktiv, zustandsorientiert, prädiktiv)	X	
Sensorik	Verschiedene Arten von Messgrößen (z.B. Temperatur, Druck, Abstand) und entsprechenden Sensortypen (z.B. resistiv, kapazitiv, induktiv) kennen und ihre wichtigen Eigenschaften beschreiben können.	Х	
	Einflusskriterien des Messsystems auf die Leistung der Datenverarbeitung von Sensordaten nennen können (z. B. Abtastrate des Systems, Auflösungskriterien, Amplituden Quantisierung).	Х	
	Begriffe der Messsystemanalyse im Kontext der Sensordatenerhebung erläutern können (z.B. Genauigkeit, Richtigkeit, systematische Messabweichung, Wiederholpräzision)	Х	
	Probleme und Lösungsansätze beim Einsatz mehrerer Sensoren skizzieren können.	Х	
	Für einen vorgegebenen industriellen Use Case geeignete Sensortypen wählen können.		Х

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
Datenvorverarbeitung	Methoden zur Validierung vorliegender Maschinendaten (z.B. Plausibilitätstests gegenüber physikalischen Messbereichen und Vergleichsmethoden innerhalb der Sensoren) kennen und beschreiben können	X	
	Besonderheiten im Umgang mit Datenströmen erläutern können.	Х	
	Die Vor- und Nachteile der Inter- und Extrapolation von Sensordaten darlegen können.	Х	
	Die Vor- und Nachteile gängiger Kommunikationsprotokolle (z.B. OPC-UA, MQTT) darlegen können.	X	
	Methoden der Filterung und Standardisierung der Daten kennen und anwenden können.	Х	Х
	Die Idee hinter linearen Filtern (z.B. Kalman-Filter) beschreiben können und sie auf gegebene Daten anwenden können.	X	×
Simulationen	Vor- und Nachteile der Verwendung von numerischen Simulationsdaten erklären können.	X	
	Methoden zur Generierung von Zufallsvariablen einer bestimmen Verteilung (z.B. univariate, normale) kennen und anwenden können.	X	X
	Modelle zur Simulation von Zeitreihen (z.B. ARMA, ARIMA) benennen und definieren können.	X	X
Ereigniszeitanalyse	Das Ziel und den Einsatzbereich einer Ereigniszeitanalyse beschreiben können.	X	
	Geeignete Verteilungen zur Simulation von Ausfallzeiten beschreiben können.	Х	
	Methoden zum Schätzen von parametrisierten Survival Funktionen aus Lebensdauern kennen und anwenden können.		Х
	Unparametrische Schätzer (z.B. Kaplan-Meier) auf gegebene Daten anwenden können.		Х

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
	Methoden zur Bewertung der Güte verschiedener Survival Funktionen benennen und beschreiben können.	Х	
Feature-Engineering für Sensordaten	Feature-Engineering im Umfeld von Maschinen- und Sensordaten definieren können.	X	
	Einfache statistische Merkmale (z.B. Mittelwert, Varianz, Extremwerte, %-Quantile) kennen und auf gegebene Daten anwenden können.	X	Х
	Konzepte der Spektralanalyse (z.B. Fourier-Transformation, Amplitude und Phasenwinkel, Zeit-Frequenz-Spektrogramme) erklären können.	X	
	Wichtige Parameter der Spektralanalyse erklären können und mögliche Probleme bei deren Wahl beschreiben können.	Х	
	Algorithmen zur Spektralanalyse kennen und anwenden können.	Х	Х
Methoden des maschinellen Lernens (Clustering, Dimensionsreduktion)	Das Konzept und die Notwendigkeit einer Dimensionsreduktion für Sensordaten erklären können.	Х	
	Die grundlegende Vorgehensweise bei einer Principal Component Analysis (PCA) darlegen können und auf gegebene Daten anwenden können.	Х	Х
	Nichtlineare Dimensionsreduktionsverfahren nennen können.	Х	
	Die Vorgehensweise von Clustering-Algorithmen (z.B. k- means, DBSCAN, spektrales Clustering) skizzieren können.	Х	
	Algorithmen zur Dimensionsreduktion und zum Clustering auf Maschinendaten kennen und anwenden können.	Х	Х
Anomaliedetektion	Die Vorgehensweise bei der Anomaliedetektion auf Sensordaten mittels Clustering beschreiben und durchführen können.	Х	Х

ANLAGE H: »CERTIFIED DATA SCIENTIST SPECIALIZED IN MACHINE DATA ANALYTICS«

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
	Die Vorgehensweise bei der Anomaliedetektion auf Sensordaten mittels PCA Score- Werten erklären können.	Х	
	Die Notwendigkeit der manuellen Überprüfung gefundener Outlier erläutern können.	X	
Vergleichsmetriken und Evaluierung	Geeignete Metriken für den Vergleich von Zeitreihen erklären und anwenden können (z.B. Vergleich eingebetteter Repräsentaten, Dynamic Time Warping Metrik).	X	Х
	Die Ergebnisse einer Analyse von Maschinendaten vergleichen und evaluieren können.		Х
Zustandsüberwachung und prädiktive Wartung	Den Einsatz der Methoden aus den Bereichen Sensorik, Datenvorverarbeitung, Dimensionsreduktion, Clustering und Anomaliedetektion zur Etablierung einer kontinuierlichen Zustandsüberwachung einer Maschine skizzieren können.	X	X
	Die Notwendigkeit von continuous deployment und der damit einhergehenden ständigen Anpassung der Ground Truth der Modelle beschreiben können.	X	
	Prädiktion des Ausfalls einer Maschine anhand geeigneter Schwellenwerte zur Funktionalität durchführen können.	Х	Х
	Die gesamte Prozesskette zur Etablierung eines Systems zur prädiktiven Wartung erläutern können und die Vor- und Nachteile des Einsatzes skizzieren können.	X	

ANLAGE I: »CERTIFIED DATA SCIENTIST SPECIALIZED IN MACHINE LEARNING OPERATIONS«

ANLAGE I: »CERTIFIED DATA SCIENTIST SPECIALIZED IN MACHINE LEARNING OPERATIONS«

- 1.1 Verweis auf andere Normen und Dokumente
- EN ISO 17024

12 Anforderungsprofil

I 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil eines »Data Scientist Specialized in Machine Learning Operations« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Der »Data Scientist Specialized in Machine Learning Operations« beschäftigt sich insbesondere mit konkreten technischen und organisatorischen Lösungsansätzen für den produktiven Einsatz von ML-Anwendungen im Unternehmen. Bei MLOps handelt es sich dabei im Wesentlichen um die Erweiterung von etablierten iterativen Software-Engineering Methoden um ML-spezifische Anteile und Beachtung der zugehörigen ML-Anforderungen.

Ein zertifizierter »Data Scientist Specialized in Machine Learning Operations«

- ist informiert über die Inhalte und Zusammenhänge des zyklischen Entwicklungsvorgehens von ML-Anwendungen auf technischer und organisatorischer Ebene (MLOps-Zyklus),
- kennt Strategien und Verfahren zur Entwicklung, Betestung, Betrieb und Monitoring von ML-Lösungen,
- kennt Methoden und Techniken, um (teil-)automatisierte ML Pipelines umsetzen zu können,
- kennt die Besonderheiten bei der Skalierung und Nutzung von Cloud-Services im Zusammenhang mit ML-Lösungen,
- kennt den Unterschied zwischen Cloud-Al und Embedded-Al Anforderungen und Konzepten sowie Methoden, um ein neuronales Netz auf Embedded Systeme zu portieren und
- ist in der Lage, das Lernen, das Deployment und den Betrieb von KI-Modellen unter Berücksichtigung von Edge-Device-Anforderungen und Nutzung dezidierter KI-Frameworks exemplarisch umzusetzen.

Abgrenzungskriterien des »Certified Data Scientist Specialized in Machine Learning Operations« gegenüber anderen Profilen im Bereich Data Science sind im Zertifizierungshandbuch dokumentiert.

Die Bezeichnung lautet: »Certified Data Scientist Specialized in Machine Learning Operations«

I 2.2 Zugangsvoraussetzungen

I 2.2.1 Vorbildungen

Ein zertifizierter »Data Scientist Specialized in Machine Learning Operations« muss nachweisen:

Ein erfolgreich abgeschlossenes Studium an

- einer deutschen wissenschaftlichen Hochschule,
- einer deutschen staatlichen oder staatlich anerkannten Fachhochschule oder
- einer von der zuständigen Stelle des Landes als gleichwertig anerkannten ausländischen Hochschule

oder

- eine mindestens einjährige Tätigkeit im Zusammenhang mit der Analyse von Daten im Unternehmensumfeld etwa im Bereich Machine Learning Operations.
- oder eine mindestens einjährige Tätigkeit in Übereinstimmung mit dem Anforderungsprofil in Abschnitt I 2.

Nachweis der Zulassungsvoraussetzungen:

Der Hoch-, Fachhoch- bzw. Fachschulabschluss wird nachgewiesen durch eine Kopie der Urkunde. Der Nachweis der Berufserfahrung sowie der zusätzlich geforderten Kenntnisse erfolgen durch die Bescheinigung des Arbeitgebers oder bei Selbstständigen durch eine eidesstattliche Erklärung.

Die Fraunhofer-Personenzertifizierungsstelle behält sich vor die Nachweise zu überprüfen. Nach Prüfung der eingereichten Unterlagen entscheidet die Fraunhofer-Personenzertifizierungsstelle über die Erfüllung der Voraussetzung. Sollten Zugangsvoraussetzungen nicht erfüllt sein, teilt die Fraunhofer-Personenzertifizierungsstelle dies dem Antragsteller unverzüglich über das Sekretariat der Fraunhofer-Personenzertifizierungsstelle mit.

Grundsätzlich kann die Fraunhofer-Personenzertifizierungsstelle in begründeten Ausnahmefällen davon abweichende Nachweise akzeptieren. Diese Nachweise und die Entscheidung der Fraunhofer-Personenzertifizierungsstelle sind zu dokumentieren.

Anmerkung:

Im zu prüfenden Einzelfall hat die antragstellende Person die Möglichkeit, fehlende Zugangsvoraussetzungen innerhalb von einem Jahr nach Ablegen der Prüfung nachzuweisen.

I 2.2.2 Zusätzliche Ausbildungen und praktische Anforderungen

Ein »Certified Data Scientist Specialized in Machine Learning Operations« muss keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

12.2.3 Persönliche Voraussetzungen

I 2.3 Geforderte Kompetenzen (Lernziele)

Die Grundlage für die Prüfung zum »Data Scientist Specialized in Machine Learning Operations« sind ausschließlich die folgenden aufgeführten Kompetenzen (Lernziele) im Bereich »ML Ops« und müssen durch eine schriftliche Prüfung nachgewiesen werden:

ANLAGE I: »CERTIFIED DATA SCIENTIST SPECIALIZED IN MACHINE LEARNING OPERATIONS«

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
Historie & Agile Software- entwicklung	Die aus der Historie erwachsenen Grundprinzipien von klassischer Software- Entwicklung nennen und deren Vorteile begründen können.	Х	-/-
	Aktuelle Verfahren und Methoden agiler Team-Organisation und Software- Entwicklung kennen und erklären können.	X	-/-
Data Science Projekte	Grundbegriffe von Data Science, KI und ML nennen und anhand von Beispielen erklären können.	X	-/-
MLOps Zyklus, -Architektur und - Terminologie	Die Grundprinzipien und Teilbereiche von MLOps erläutern, voneinander abgrenzen und wichtige Bestandteile (technische Bausteine, Aktivitäten) beschreiben können.	Х	X
	Eine exemplarische funktionale und technische Architektur des MLOps-Zyklus kennen und beschreiben können.	X	-/-
Die Rolle von MLOps in Data Science Projekten	Die organisatorischen Spezifika von ML- Projekten und ML-Produkten kennen und Einflussfaktoren auf deren Komplexität erläutern können.	X	X
riojekten	Festlegung von Verantwortlichkeiten und Delegation von Entscheidungen als Vorbereitung von automatisierten Prozessen anhand eines Beispiels beschreiben können.	X	-/-
Rollen und Verantwortlich-	Notwendige und ergänzende Rollenbilder von MLOps nennen können.	Х	-/-
keiten im MLOps-Zyklus	Das Zusammenspiel der MLOps-Rollen im Team erklären können.	Х	-/-
Verbindung zu IT- Management	Schnittstellen und Methoden des Zusammenspiels von MLOps-Teams mit anderen Bereichen eines Unternehmens nennen können.	Х	-/-
Explorative Phase	Die funktionalen und technischen Bestandteile der explorativen Phase des MLOps-Zyklus nennen und erklären können.	Х	-/-

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
Early Software Engineering	Software-Engineering-Konzepte nennen können, die durch MLOps in der explorativen Phase des MLOps-Zyklus gefördert werden.	X	-/-
Notebook Handling	Möglichkeiten der Versionierung und des Testing von Notebooks nennen können.	X	-/-
Experiment Tracking	Das Prinzip der Nachvollziehbarkeit/Wiederholbarkeit und seine Auswirkungen auf die Entwicklung von Modellen verstehen und erklären können.	X	-/-
Model Storages	Möglichkeiten des Logging und der Versionierung von Modellen nennen können.	X	-/-
	Logging und Versionierung von Modellen in der explorativen Phase des MLOps-Zyklus anwenden können.	X	X
Software Engineering Konzepte	Den Übergang von explorativer Phase zu produktiver Entwicklung erklären und Methoden zur Begegnung von Anforderungen und Herausforderungen in dieser Phase beschreiben können.	X	-/-
MLOps Arbeitsumgebu ngen	Die besonderen Anforderungen an die Produktionsumgebung kennen.	X	-/-
Integration von ML Komponenten	Grundkonzepte von Continuous Integration und Continuous Deployment mit Bezug auf ML-Spezifika nennen und beschreiben können.	Х	-/-
Projekt repositories	ML Ops -spezifische Datenbestände und Artefakte kennen.	Х	
und data stores	Feature stores in Aufbau und Leistungen kennen	Х	-/-
Projekt-Daten, Meta-Daten und Versionierung	Herausforderungen des Datenmanagements im Rahmen von MLOps und Lösungsmöglichkeiten benennen können.	Х	
2 c. 5. 5. m c. dilig	Die Rolle des "Data Engineers" bei der Entwicklung und dem Betrieb von ML- Anwendungen nennen und beschreiben können	Х	-/-
Notebooks und Code	Werkzeuge und Methoden zur Überführung und Qualitätssicherung von explorativem Code in Produktiv-Code nennen können.	Х	-/-
	Die Phase der Continuous Integration im MLOps-Zyklus funktional und technisch beschreiben können.	Х	-/-

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
Continuous Integration (Infrastruktur)	Das Konzept von Continous Delivery kennen und der pipeline in den MLOps Zyklus positionieren		
Continuous Integration (Testing)	Die besonderen Herausforderungen von (automatisiertem) Testing im Rahmen von MLOps erklären können.	Х	-/-
3 ,	Die Rolle des "Test Manager" bei der Entwicklung von ML-Anwendungen nennen und beschreiben können.	Х	-/-
Deployment	Die verschiedenen Arten des Deployments von ML-Anwendungen nennen können.	Х	-/-
	Technische und organisatorische Maßnahmen des Deployments von ML- Anwendungen erklären können.	Х	-/-
	Die Rolle des "Service/Release Manager" bei der Inbetriebnahme von ML- Anwendungen nennen und beschreiben können.	Х	-/-
Monitoring und Überwachung	Die Herausforderung bei der Überwachung von ML-Anwendungen und mögliche Auswirkungen erklären können.	Х	-/-
	Methoden und Werkzeuge zur Überwachung von ML-Prozessen und ML- Anwendungen nennen können.	Х	-/-
Orchestrierung des ML Prozesses	Die Notwendigkeit zur Orchestrierung und Automatisierung von ML-Prozessen erklären können.	X	-/-
	Automatisierungsstufen von MLOps nennen und erklären können.	Х	-/-
ML-Pipelines	Automatisierbare Bestandteile des MLOps-Zyklus und Möglichkeiten der Aktivierung nennen können.	Х	-/-
	Sinnvolle Planung der Lernprozesse im Team durch schrittweise Einführung von Automatisierung in den Phasen einer Produkt-Entwicklung	X	-/-
	Das Modell ist eine im laufenden Betrieb der Anwendung eigenständig aktualisierte Komponente einer Anwendung	Х	-/-
Skalierung des MLOps Prozesses	ML-spezifische Anforderungen an die Skalierung von ML-Anwendungen nennen können.	Х	-/-
	Technologien, Frameworks und Services zur technischen und funktionalen Skalierung von ML-Anwendungen nennen und deren Funktionsweise erklären können.	X	-/-

ANLAGE I: »CERTIFIED DATA SCIENTIST SPECIALIZED IN MACHINE LEARNING OPERATIONS«

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
Cloud Umgebungen	Cloud-basierte Services zur Unterstützung von MLOps nennen und bewerten können.	Х	Х
Theorie Edge Device	Herausforderungen und Abgrenzungen von Edge Devices zu Standard- Infrastruktur im Rahmen der MLOps- Architektur nennen können.	X	-/-
	ML-spezifische Technologien, Verfahren und Datentypen zur Entwicklung auf Edge Devices nennen können.	X	-/-
	Anwendungsbeispiele für die Nutzung von Edge Devices im Rahmen von MLOps nennen und erläutern können.	X	Х
	Aus den ausgelesenen Werten (offline) ein KI-Modell erstellen und trainieren können	Х	X
Lernen auf dem PC und	(Sensor) Werte aus einem Edge Device auslesen können	Х	Х
Deployment auf Edge	Aus den Werten (offline) ein KI-Modell erstellen und trainieren können.	Х	Х
Device	KI-Modelle aus gängigen ML-Frameworks in Edge-kompatible Formate umwandeln können	Х	Х
	Fertiges KI-Modell auf einem Edge Device deployen können.	Х	Х
Lernen und Deployment	Das KI-Modell auf einem Edge Device erstellen können.	Х	Х
nur auf Edge Device	Das KI-Modell direkt auf dem Gerät trainieren können.	Х	Х
Deployment auf Edge Devices und Umgang mit KI Framework für Edge Devices	Eine Demo ML-Anwendung kompilieren und auf einem Edge Device manuell ausführen können	Х	Х
	Eine Demo ML-Anwendung mittels MLOps-Werkzeugen automatisiert kompilieren und auf einem Edge Device deployen können	Х	X
	Den praktischen Umgang mit ML- Frameworks zur Entwicklung und Deployment auf Edge-Devices kennen (z.B. AlfES)	X	X

ANLAGE J: »CERTIFIED DATA SCIENTIST SPECIALIZED IN PROCESS MINING«

ANLAGE J: »CERTIFIED DATA SCIENTIST SPECIALIZED IN PROCESS MINING«

- J 1 Verweis auf andere Normen und Dokumente
- EN ISO 17024

J 2 Anforderungsprofil

J 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil eines »Data Scientist Specialized in Process Mining« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Ein zertifizierter »Data Scientist Specialized in Process Mining«

- ist in der Lage, die drei klassischen Process Mining-Techniken Discovery, Conformance und Enhancement mit PM4Py auf eigene & nicht bekannte Prozesse anzuwenden, dabei prozessverbessernde Erkenntnisse zu generieren und diese erfolgreich fachlich zu kommunizieren,
- kann die notwendigen Schritte/Bestandteile, die für eine Process-Mining-Analyse erforderlich sind (Datenextraktion, Aufbereitung, Analyse...) voneinander abgrenzen, um die Voraussetzungen für eine mögliche Prozessanalyse mit Hilfe von IT-Experten des eigenen Unternehmens schaffen zu können und
- kann (Miss)-erfolgsfaktoren und organisationale Gestaltungsmöglichkeiten von Process Mining benennen, um grundlegend zu erläutern, wie Process Mining langfristig in einem Unternehmen etabliert werden kann, sodass es sein Werteversprechen einlöst und betriebswirtschaftlichen Nutzen in möglichst vielen Organisationeinheiten generiert.

Abgrenzungskriterien des »Certified Data Scientist Specialized in Process Mining« gegenüber anderen Profilen im Bereich Data Science sind im Zertifizierungshandbuch dokumentiert.

Die Bezeichnung lautet: »Certified Data Scientist Specialized in Process Mining«

J 2.2 Zugangsvoraussetzungen

J 2.2.1 Vorbildungen

Ein zertifizierter »Data Scientist Specialized in Process Mining« muss nachweisen:

Ein erfolgreich abgeschlossenes Studium an

- einer deutschen wissenschaftlichen Hochschule,
- einer deutschen staatlichen oder staatlich anerkannten Fachhochschule oder
- einer von der zuständigen Stelle des Landes als gleichwertig anerkannten ausländischen Hochschule

oder

- eine mindestens einjährige Tätigkeit im Zusammenhang mit der Analyse von Daten im Unternehmensumfeld etwa im Bereich Process Mining
- oder eine mindestens einjährige Tätigkeit in Übereinstimmung mit dem Anforderungsprofil in Abschnitt J2.

Nachweis der Zulassungsvoraussetzungen:

Der Hoch-, Fachhoch- bzw. Fachschulabschluss wird nachgewiesen durch eine Kopie der Urkunde. Der Nachweis der Berufserfahrung sowie der zusätzlich geforderten Kenntnisse erfolgen durch die Bescheinigung des Arbeitgebers oder bei Selbstständigen durch eine eidesstattliche Erklärung.

Die Fraunhofer-Personenzertifizierungsstelle behält sich vor die Nachweise zu überprüfen. Nach Prüfung der eingereichten Unterlagen entscheidet die Fraunhofer-Personenzertifizierungsstelle über die Erfüllung der Voraussetzung. Sollten Zugangsvoraussetzungen nicht erfüllt sein, teilt die Fraunhofer-Personenzertifizierungsstelle dies dem Antragsteller unverzüglich über das Sekretariat der Fraunhofer-Personenzertifizierungsstelle mit.

Grundsätzlich kann die Fraunhofer-Personenzertifizierungsstelle in begründeten Ausnahmefällen davon abweichende Nachweise akzeptieren. Diese Nachweise und die Entscheidung der Fraunhofer-Personenzertifizierungsstelle sind zu dokumentieren.

Anmerkung:

Im zu prüfenden Einzelfall hat die antragstellende Person die Möglichkeit, fehlende Zugangsvoraussetzungen innerhalb von einem Jahr nach Ablegen der Prüfung nachzuweisen.

J 2.2.2 Zusätzliche Ausbildungen und praktische Anforderungen

Ein »Certified Data Scientist Specialized in Process Mining« muss keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

J 2.2.3 Persönliche Voraussetzungen

J 2.3 Geforderte Kompetenzen (Lernziele)

Die Grundlage für die Prüfung zum »Data Scientist Specialized in Process Mining« sind ausschließlich die folgenden aufgeführten Kompetenzen (Lernziele) im Bereich »Process Mining« und müssen durch eine schriftliche Prüfung nachgewiesen werden:

ANLAGE J: »CERTIFIED DATA SCIENTIST SPECIALIZED IN PROCESS MINING«

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
Grundlegendes Verständnis für Process Mining und	Die Teilnehmenden können in eigenen Worten wiedergeben, was Process Mining ist.	X	
dessen Einsatzzweck	Die Teilnehmenden können erläutern, für welche unternehmerischen Problemstellungen sich Process Mining eignet und unter welchen Gegebenheiten ein Einsatz (nicht) sinnvoll ist.	X	
	Die Teilnehmenden können Process- Mining-Success-Stories beschreiben und an ihren eigenen unternehmerischen Kontexten spiegeln.	X	
	Die Teilnehmenden können Eigenschaften eines Prozesses aufzählen.	X	
	Die Teilnehmenden können Process Mining Analysemöglichkeiten nennen und deren Einsatzzweck in eigenen Worten erläutern.	Х	
	Die Teilnehmenden können die wesentlichen Bestandteile eines Event Logs beschreiben und ein Event Log auf Basis einer Prozessschilderung selbst erstellen.		X
Visuelle Analysemethoden des Process Mining	Die Teilnehmenden sind in der Lage, verschiedene Prozessvisualisierungen und -modellierungssprachen voneinander zu unterscheiden und zu erklären, um darauf in der weiteren Nutzung von Process Mining Methoden aufzubauen.	X	
	Die Teilnehmenden können Schilderungen eines Prozesses in eine Prozessvisualisierung überführen.		×
	Die Teilnehmenden können Prozessvisualisierungen analysieren und erste Erkenntnisse (Wissen über spezifische Prozessabläufe, oder Probleme) ableiten.		X

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
Process Discovery	Die Teilnehmenden können den Unterschied zwischen Process Discovery und Prozessvisualisierung beschreiben.	X	
	Die Teilnehmenden können die Vorteile von Process Discovery gegenüber Prozessvisualisierung beschreiben.	X	
	Die Teilnehmenden können verschiedene Process Discovery Algorithmen auf einem abstrakten Level (Stärken und Schwächen) erkennen und diese namentlich benennen, um den geeigneten Algorithmus für einen bestimmten Prozess auszuwählen.		X
	Die Teilnehmenden können die Schwierigkeiten datenbasierter Process Discovery nennen und den Ansatz manueller Discovery beschreiben.	X	
	Die Teilnehmenden können die vier Qualitätsdimensionen eines Prozessmodells einordnen, sodass sie sinnvolle Prozessmodelle unter Berücksichtigung der Qualitätsdimensionen erstellen können.		Х
Process Conformance	Die Teilnehmenden erkennen, dass ein hochwertiges Prozessmodell (Qualitätskriterien) nicht das gesamte Verhalten realer Prozesse abdeckt und dass das nicht abgedeckte Verhalten mit Conformance Checking eingeschätzt werden kann.	X	
	Die Teilnehmenden können unternehmerische Einsatzzwecke von Conformance Checking (Audit, etc.) benennen.	X	
	Die Teilnehmenden können die beiden Conformance Algorithmen unterscheiden und können deren Stärken und Schwächen aufzählen.	X	
	Die Teilnehmenden können Conformance- Prozessvisualisierungen interpretieren, um mögliche Gründe für Prozessabweichungen zu interpretieren und Auffälligkeiten zu identifizieren.		Х

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
Process Performance	Die Teilnehmenden können verschiedene Messgrößen (z.B. Durchlaufzeit) nennen und Kategorien/Dimensionen zuordnen.	X	
	Die Teilnehmenden können für ein vorgegebenes Beispielszenario passende Performancekennzahlen identifizieren, um eine holistische Performancemessung zu ermöglichen, und ihre Auswahl begründen.		X
	Die Teilnehmenden können die Performance von Prozessen verbessern, indem sie bspw. Prozessvarianten mit schlechter Performance identifizieren und Verbesserungsansätze darauf anwenden.		X
Praktische Anwendung verschiedener Process Mining Ansätze	Die Teilnehmenden können argumentieren, warum die Kombination von Discovery, Performance und Conformance erforderlich ist, um Prozesserkenntnisse zu generieren.	X	
	Die Teilnehmenden können mithilfe von Process Mining Erkenntnisse für ausgewählte Fragestellungen mit dafür aufbereiteten und zur Verfügung gestellten Echtweltdaten generieren, um Process Mining langfristig im eigenen Unternehmen einsetzen zu können.		X
Ablauf von Process Mining Analysen	Die Teilnehmenden können Kriterien, die bei der Auswahl geeigneter Prozesse für Process Mining zu beachten sind, nennen und beschreiben.	Х	
	Die Teilnehmenden können diese Kriterien auf Beispielprozesse anwenden und begründen, welche davon am besten für die Analyse mit Process Mining geeignet sind.		Х
	Die Teilnehmenden können die notwendigen Schritte/Bestandteile, die für eine Process-Mining-Analyse erforderlich sind (Datenextraktion, Aufbereitung, Analyse), voneinander abgrenzen und können erklären, wie diese aufeinander aufbauen.	X	

ANLAGE J: »CERTIFIED DATA SCIENTIST SPECIALIZED IN PROCESS MINING«

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
Organisationale Aspekte von Process Mining	Die Teilnehmenden können relevante Fragestellungen und Zieldimensionen für die organisationale Verankerung und Skalierung von Process Mining beschreiben.	X	
	Die Teilnehmenden können verschiedene Gestaltungsmöglichkeiten für die organisationale Verankerung von Process Mining beschreiben sowie deren Vor- und Nachteile erläutern.	X	
	Die Teilnehmenden können Erfolgsfaktoren und Hürden für die organisationale Einführung und Skalierung von Process Mining beschreiben.	X	
	Die Teilnehmenden können verschiedene Rollen und Verantwortlichkeiten, die für die Einführung und Skalierung von Process Mining benötigt werden, unterscheiden und sinnvolle Teamzusammensetzungen für die Skalierung von Process Mining wiedergeben.	X	

ANLAGE K: »CERTIFIED DATA SCIENTIST SPECIALIZED IN PRODUCTION«

ANLAGE K: »CERTIFIED DATA SCIENTIST SPECIALIZED IN PRODUCTION«

- K 1 Verweis auf andere Normen und Dokumente
- EN ISO 17024

K 2 Anforderungsprofil

K 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil eines »Data Scientist Specialized in Production« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Ein zertifizierter »Data Scientist Specialized in Production«

- ist informiert darüber, welche Dimensionen zur Bewertung von Use Cases es in der Produktion gibt und kann mehrere Use Cases bewerten und vergleichen, um den passendsten auswählen zu können,
- kennt verschiedene Probleme beim Data Preprocessing im Kontext der Produktion und kann Methoden zur Verbesserung der Datenqualität beschreiben,
- kennt verschiedene analytische Herangehensweisen für die Lösung einer Problemstellung in der Produktion mittels Machine Learning und kann Modelle erstellen und mittels Metriken evaluieren,
- kennt die Möglichkeiten des Einsatzes von Machine Learning Modellen in der Produktionsumgebung durch das Deployment und
- ist sensibilisiert für die Notwendigkeit einer Zertifizierung von ML-Modelle in der Produktion und kann erläutern, warum Qualitätssicherung von ML-Modellen wichtig ist.

Abgrenzungskriterien des »Certified Data Scientist Specialized in Production« gegenüber anderen Profilen im Bereich Data Science sind im Zertifizierungshandbuch dokumentiert.

Die Bezeichnung lautet: »Certified Data Scientist Specialized in Production«

K 2.2 Zugangsvoraussetzungen

K 2.2.1 Vorbildungen

Ein zertifizierter »Data Scientist Specialized in Production« muss nachweisen:

Ein erfolgreich abgeschlossenes Studium an

- einer deutschen wissenschaftlichen Hochschule,
- einer deutschen staatlichen oder staatlich anerkannten Fachhochschule oder
- einer von der zuständigen Stelle des Landes als gleichwertig anerkannten ausländischen Hochschule

oder

- eine mindestens einjährige Tätigkeit im Zusammenhang mit der Analyse von Daten im Unternehmensumfeld etwa im Bereich Production
- oder eine mindestens einjährige Tätigkeit in Übereinstimmung mit dem Anforderungsprofil in Abschnitt K2.

Nachweis der Zulassungsvoraussetzungen:

Der Hoch-, Fachhoch- bzw. Fachschulabschluss wird nachgewiesen durch eine Kopie der Urkunde. Der Nachweis der Berufserfahrung sowie der zusätzlich geforderten Kenntnisse erfolgen durch die Bescheinigung des Arbeitgebers oder bei Selbstständigen durch eine eidesstattliche Erklärung.

Die Fraunhofer-Personenzertifizierungsstelle behält sich vor die Nachweise zu überprüfen. Nach Prüfung der eingereichten Unterlagen entscheidet die Fraunhofer-Personenzertifizierungsstelle über die Erfüllung der Voraussetzung. Sollten Zugangsvoraussetzungen nicht erfüllt sein, teilt die Fraunhofer-Personenzertifizierungsstelle dies dem Antragsteller unverzüglich über das Sekretariat der Fraunhofer-Personenzertifizierungsstelle mit.

Grundsätzlich kann die Fraunhofer-Personenzertifizierungsstelle in begründeten Ausnahmefällen davon abweichende Nachweise akzeptieren. Diese Nachweise und die Entscheidung der Fraunhofer-Personenzertifizierungsstelle sind zu dokumentieren.

Anmerkung:

Im zu prüfenden Einzelfall hat die antragstellende Person die Möglichkeit, fehlende Zugangsvoraussetzungen innerhalb von einem Jahr nach Ablegen der Prüfung nachzuweisen.

K 2.2.2 Zusätzliche Ausbildungen und praktische Anforderungen

Ein »Certified Data Scientist Specialized in Production« muss keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

K 2.2.3 Persönliche Voraussetzungen

K 2.3 Geforderte Kompetenzen (Lernziele)

Die Grundlage für die Prüfung zum »Data Scientist Specialized in Production« sind ausschließlich die folgenden aufgeführten Kompetenzen (Lernziele) im Bereich »Production« und müssen durch eine schriftliche Prüfung nachgewiesen werden:

ANLAGE K: »CERTIFIED DATA SCIENTIST SPECIALIZED IN PRODUCTION«

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
Grundlagen Data Science in der Production	Den sieben Anwendungsfeldern von Machine Learning in der Produktion Use Cases zuordnen können.	X	
	Phasen des CRISP DM im Kontext der Produktion beschreiben und ihnen Projetschritte zuweisen können.	X	
	Typische Rollen von Machine Learning Projekten im Bereich Produktion benennen können.	X	
Daten- vs.		Х	
Business- getriebene Ansätze	Verschiedene mögliche Use Cases in		
für die	der Produktion skizzieren können.		
Identifizierung von UCsW			
	Die möglichen Dimensionen für die Bewertung eines Machine Learning Use Cases in der Produktion benennen können.	X	
	Einen durch ein Szenario beschriebenen Use Case im Bereich der Produktion, mit einer vorgegebenen Skala bewerten können, unter Zuhilfenahme eines Fragebogens.		Х
	Verschiedene Use Cases im Bereich der Produktion bewerten und diese miteinander vergleichen können.		Х
	Eine Rückfrage zu einer Use Case Bewertungsdimension formulieren können, wenn ihm eine Konversation zwischen einem Fachexperten für eine Produktionsmaschine und einem Interviewer vorgelegt wird.		X
Use Case Erarbeitung und Datenverständnis	Einzelne Python-Code Snippets können verschiedenen Aufgaben der Datenqualitätsüberprüfung im Kontext der Produktion zugeordnet werden.	X	

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
	Einen Use Case nach Lesen einer Konversation zwischen einem Fachexperten für Produktionsprozesse und einem Interviewer auf der Use Case Portfolio Matrix begründet richtig platzieren können.	Х	
Data Preprocessing	Datenprobleme im Bereich Produktion in Datensätzen benennen können.	X	
	Datenproblem im Bereich Produktion einer Kategorie zuordnen können.	X	
	Verschiedene Probleme beim Data Preprocessing im Kontext der Produktion und Methoden für die Fehlerbehebung nennen können.	X	
	Vor- und Nachteile einer Methode für die Fehlerbehebung im Kontext der Produktion für ein bestimmtes Problem abwägen können.		Х
	Die Art von Schritten zur Behebung von Datenfeldern anhand eines Beispiels aus der Produktion beschreiben können.	X	
Modelllierung	Ein Analyseproblem aus einem Machine Learning Use Case in der Produktion beschreiben können.	X	
	Analyseproblem zu einer Verfahrensklasse (Klassifikation, Regression, Clustering) zuordnen können.	X	
	Methoden/Algorithmen der Verfahrensklassen beschreiben können.	X	
	Dem Analyseproblem ein mögliches Verfahren zuordnen können.	X	
	Analytische Verfahren im Bereich der Produktion kennen.	X	
	Die Theoretischen Hintergründe von analytischen Verfahren beschreiben können.	X	
	Die Vor- und Nachteile der analytischen Verfahren abschätzen können.		X
	Die Vor- und Nachteile mit Blick auf das Analyseproblem abwägen können, um so das geeignete Verfahren auszuwählen.		X

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
	Python Code-Implementierungen verschiedener Algorithmen einer Verfahrensklasse zuordnen können.	X	
	Vor- und Nachteile verschiedener Algorithmen für die Lösung einer analytischen Fragestellung aus der Produktion gegeneinander abwägen können.		X
Evaluation	Metriken für die Bewertung von Modellgüten im Kontext der Produktion kennen und Modelle aus einer Verfahrensklasse damit vergleichen können.	X	
	Die Metrik im Geschäftskontext aus der Produktion erläutern können.	Х	
Modelperformance und Hyperparameter	Notwendigkeit von Modelltuning im Kontext der Produktion erklären können.	X	
	Die Vor- und Nachteile sowie die praktische Bedeutsamkeit von verschiedenen Parameteroptimierungsverfahren im Produktionskontext benennen können.	Х	
	Overfitting anhand eines Beispiels aus der Produktion erklären können und Methoden für die Verhinderung benennen können.	X	
Deployment	Möglichkeiten für den Betrieb eines Machine Learning Modells im Bereich der Produktion skizzieren können.	Х	
	Deployment-Szenarien Deployment Designs im Bereich der Produktion zuordnen können.	X	
	Rahmenbedingungen von Deployment Designs im Kontext der Produktion erklären können.	X	
Zertifizierung	Erklären können, warum die Zertifizierung von Modellen in der Produktion notwendig ist.	Х	
	Erklären können, warum Black Box- Modelle zzt. Noch nicht zertifiziert werden.	X	
	Vor- und Nachteile verschiedener Modelltypen mit Blick auf die transparente Anwendbarkeit nennen können.	Х	

ANLAGE K: »CERTIFIED DATA SCIENTIST SPECIALIZED IN PRODUCTION«

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
	Möglichkeiten der Qualitätssicherung von Machine Learning Modellen in der Produktion – auch wenn es keine Zertifizierungsstandards gibt – nennen können.	X	
Vorstellung eigener Ergebnisse	Mit Daten aus dem Produktionskontext eigene Modellierungen durchführen können Die Ergebnisse im Geschäftskontext interpretieren und darstellen können.		X

ANLAGE L: »CERTIFIED DATA SCIENTIST SPECIALIZED IN QUANTUM MACHINE LEARNING«

ANLAGE L: »CERTIFIED DATA SCIENTIST SPECIALIZED IN QUANTUM MACHINE LEARNING«

- L 1 Verweis auf andere Normen und Dokumente
- EN ISO 17024

L 2 Anforderungsprofil

L 2.1 Bestimmung des Anforderungsprofils

Das Qualifikationsprofil eines "Data Scientist Specialized in Quantum Machine Learning" ergibt sich aus den Merkmalen und der Beschreibung seines Arbeitsfeldes.

Ein "Data Scientist specialized in Quantum Machine Learning":

- programmiert ein Anwendungsbeispiel zum Thema Quantenoptimierung mit Hilfe von Quanten-Toolkits im Virtual Lab,
- ist in der Lage, den Ansatz der variablen Quantenalgorithmen zu verstehen und mit Hilfe eines Quanten-Toolkits Quanten-Clustering-Algorithmen wie Quantum k-Means zu erstellen und in praktischen Übungen anzuwenden,
- kennt die Methoden der Quanten-Hauptkomponentenanalyse und der Quanten-Support-Vector-Machine (QSVM) und setzt sie in Anwendungsfällen ein,
- programmiert quantenneuronale Netze mit Hilfe von Quanten-Toolkits für einfache Anwendungsfälle und zeigt mögliche Anwendungen und Vorteile auf.

L 2.2 Zugangsvoraussetzungen

L 2.2.1 Vorbildungen

Ein zertifizierter "Data Scientist Specialized in Quantum Machine Learning", muss folgende Voraussetzungen erfüllen

Ein erfolgreich abgeschlossenes Studium an

- einer deutschen wissenschaftlichen Universität,
- einer deutschen staatlichen oder staatlich anerkannten Fachhochschule, oder
- einer von der zuständigen Behörde des Staates als gleichwertig anerkannte ausländische Hochschule

oder

■ mindestens einjährige Tätigkeit im Bereich Software Engineering, Data Science, Quantum Computing oder Technology Scout.

und

■ Grundkenntnisse des maschinellen Lernens (notwendige Konzepte des maschinellen Lernens werden kurz wiederholt)

Hinweis:

In besonderen Fällen hat der Bewerber die Möglichkeit fehlende

Fraunhofer-Personenzertifizierungsstelle Zugangsvoraussetzungen innerhalb eines Jahres nach Ablegen der Prüfung nachzuweisen.

Nach Prüfung der eingereichten Unterlagen entscheidet die Fraunhofer-Personalzertifizierungsstelle über die Voraussetzungen. Sind die Zugangsvoraussetzungen nicht erfüllt, teilt die Fraunhofer-Personalzertifizierungsstelle dem Antragsteller die Entscheidung direkt mit.

Grundsätzlich kann die Fraunhofer-Personalzertifizierungsstelle in begründeten und vertretbaren Ausnahmefällen abweichende Nachweise akzeptieren. Diese Nachweise, Dokumente und Entscheidungen der Fraunhofer-Personalzertifizierungsstelle sind zu dokumentieren.

L 2.2.2 Zusätzliche Ausbildungen und praktische Tätigkeiten

Ein "Data Scientist Specialized in Quantum Machine Learning" muss keine zusätzliche Ausbildung, Berechtigung oder praktische Erfahrungen nachweisen.

L 2.2.3 Persönliche Voraussetzungen

L 2.3 Geforderte Kompetenzen (Lernziele)

Grundlage für die Prüfung zum »Data Scientist Specialized in Quantum Machine Learning« sind folgende nachzuweisende Kompetenzen (Lernziele):

Thema	Kompetenzen (Lernziele)	wisse n	anwe nden.	bewerte n
Maschinelles Le	rnen/Datenwissenschaft und Gru	ndlagen		
Maschinelles	Erläutern können, was Daten sind	Х		
Lernen/Datenwi ssenschaft	Methoden zur Datenvorverarbeitung (Integration, Reduktion, Bereinigung, Transformation, Anreicherung) erläutern können	Х		
	Konzept der Merkmalsräume erläutern können	Х		
	Eine Datentransformationsmethode und eine geeignete Merkmalsdarstellung implementieren können		X	
	Erläutern können, was ein Lernproblem/-algorithmus ist	Х		
	Den Unterschied zwischen überwachtem und unüberwachtem Lernen erläutern können	X		
	Verschiedene Lernaufgaben (Klassifizierung, Regression und Clustering) erläutern können	Х		
	Algorithmus zur Lösung der Clustering-Lernaufgabe implementieren können		X	
	Validierung und Evaluierung eines Modells erläutern können	Х		
	Verschiedene statistische Bewertungsmetriken für Lernaufgaben (Accuracy), Trefferquote (Recall), RMSE, MAE, Silhouettenkoeffizient) erläutern können	X		
	Konzepte der theoretischen Komplexität in Modellen des maschinellen Lernens erläutern können	Х		
	Ergebnisse mit angemessenen Maßstäben und Untersuchung der Gültigkeit der Lösung erläutern können	Х		

Thema	Kompetenzen (Lernziele)	wisse n	anwe nden.	bewerte n
Quantencompu ting	Den Unterschied zwischen einem Bit und einem Qubit (Superposition) erläutern können	X		
	Erläutern können, dass mehrere Qubits als Quantenzustand beschrieben werden können, der eine Wahrscheinlichkeitsverteilung darstellen kann	X		
	Erläutern können, dass Quantenzustände mit Quantengattern manipuliert/umgewandelt werden können	Х		
	Die unitäre Matrixform der wichtigsten Quantengatter (X, Y, Z, H, CX, etc.) erläutern können	Х		
	Die Bell-Zustände und warum sie interessant sind erläutern können	Х		
	Quantenschaltkreisdiagramme erläutern können	X		
	Einen Quantenschaltkreis, der aus mehreren Quantengattern besteht, beschreiben und umsetzen können	х	х	
	Erläuterung, dass es Quantenalgorithmen gibt, die (in Bezug auf die Komplexität) nachweislich schneller sind als klassische Gegenstücke	X		
	Den QFT-Algorithmus zur Berechnung der diskreten Fourier- Transformation und den entsprechenden Komplexitätsvorteil erläutern können	X		
	Das Paradigma des adiabatischen Quantencomputers erläutern können	X		
	Die Anwendbarkeit und den potenziellen Vorteilen des adiabatischen Quantencomputings für die Lösung quadratischer, unbeschränkter binärer Optimierungsprobleme (QUBO) erläutern können	×		
	Ein kleines QUBO-Beispiel (Clustering) implementieren und eine Lösung finden können		X	

Thema	Kompetenzen (Lernziele)	wisse n	anwe nden.	bewerte n	
Einführung in C	Einführung in Quanten-Clustering-Algorithmen				
Klassische Clustering- Algorithmen	Den Unterschied zwischen hartem (hard) und weichem (soft) Clustering erläutern können	X			
	Das Grundprinzip des klassischen k-Means in einem Satz ausdrücken können	Х			
	Clustermodelle benennen können	Х			
	Nachteile von k-Means im Vergleich zu anderen Clustermethoden benennen können	X			
	Die Ellbogenmethode zur Auswahl der optimalen Anzahl von Clustern im k-Means- Algorithmus erläutern können	Х			
	Erläutern können, worauf der k- Means reagiert	Х			
Grover- Algorithmus	Die vereinfachte Schaltung des Grover-Algorithmus erläutern können	X			
	Die wichtigsten Schritte des Grover-Algorithmus benennen können	Х			
	Die Abfragekomplexität von Grovers Algorithmus und sequentiellem Suchalgorithmus vergleichen können	X			
	Die Intuition des Grover- Algorithmus geometrisch skizzieren können	Х			
Quanten-k- Means- Algorithmus	Das Grundprinzip von Quantum k-Means in einem Satz erläutern können	Х			
	Die Schwächen von Quantum k- Means in der aktuellen NISQ-Ära beschreiben können	X			
	Die Schritte des Quantum k- Means-Algorithmus benennen können	X			
	Das Kernprinzip von SWAP-Tests benennen können	Х			
	Die Rolle des SWAP-Tests im Quantum k-Means-Algorithmus benennen können	X			

Thema	Kompetenzen (Lernziele)	wisse n	anwe nden.	bewerte n			
	Die Rolle des Grover-Algorithmus im Quantum k-Means- Algorithmus benennen können	х					
Parametrisierte	Parametrisierte Quantenschaltkreise (PQCs)						
Parametrisierte Quantenschaltk reise	Zeigen können, wie Gatter als Rotationen auf Quantenzustände wirken		×				
	einen Quantenzustand der entsprechenden Visualisierung auf einer Bloch-Sphäre zuordnen können	Х					
	Ein parametrisierten Rotationstors erläutern und herstellen können		Х				
	Die Verwendung mehrerer Gatter (z.B. in Schichten) zum Aufbau komplexerer Schaltungen veranschaulichen können	X					
	Nennen können, dass es beim Quantum Machine Learning (QML) nicht nur um Geschwindigkeitszuwächse geht, sondern auch um die Nutzung des komplexen Raums, der durch Quantencomputer zugänglich wird.	х					
Kodierung der Daten	Erläutern können, dass Daten auf Quantenzustände abgebildet werden können	Х					
	Basiscodierung, Amplitudencodierung und Winkelcodierung nennen können	Х					
	Das Konzept der Winkelkodierung erläutern können und eine einfache Schaltung, die Winkelkodierung verwendet, skizzieren können	X					
	Nennen von Datenmerkmalen, die in PQCs kodiert werden können (z.B. Symmetrien)	х					
	Erläutern können, wie die Aussagekraft durch wiederholte Eingabekodierung erhöht werden kann (z.B. erneutes Hochladen von Daten)	Х					
Analyse von parametrisierte n	Redundante Gatterkombinationen identifizieren und modifizieren können	X					

Thema	Kompetenzen (Lernziele)	wisse n	anwe nden.	bewerte n
Quantenschaltu ngen	Erläutern können, dass die Quanten-Fischer-Information (QFI) verwendet werden kann, um automatisch Redundanzen zu finden	Х		
Einführung in C	uantenkerne			
Beschreibung der grundlegenden	Beschreiben können, wofür die klassischen Kernel-Methoden verwendet werden	X		
Konzepte der klassischen	Den klassischen Kerneltrick erläutern können	X		
Klassischen Kernel- Methode und der Support- Vektor- Maschinen	Die Vorteile von Support-Vektor- Maschinen für das klassische maschinelle Lernen beschreiben können	X		
Implementierun g einer	Die derzeit verfügbaren Feature Maps beschreiben können	X		
Kernelmatrix unter Verwendung	Einen Kreislauf von derzeit verfügbaren Quantenmerkmalen beschreiben können		X	
von Quantenmerkm	Eine benutzerdefinierte parametrisierte Feature Map implementieren können		X	
alen mit Hilfe eines entsprechenden Tools (z. B.	Die Quantenkernelmatrix eines gegebenen Trainings- und Testdatensatzes berechnen können		Х	
Qiskit) und Lösung eines Klassifikationspr	Die Struktur der Quantenkernmatrix beschreiben können	X		
oblems damit	Eine einfache Klassifizierungsaufgabe unter Verwendung der Quanten- Kernelmatrizen in einer klassischen Support-Vector- Maschine lösen können		X	
Training von Quantenkernel	Die Idee des Kernel Alignments beschreiben können	X		
n mit gradientenbasie rter Optimierung	Einen Kernel-Ziel-Abgleich (kernel-target alignment) durchführen können, um festzustellen, wie gut der Quantenkernel die Ähnlichkeiten der Daten wiedergibt		X	

Thema	Kompetenzen (Lernziele)	wisse n	anwe nden.	bewerte n
	Eine Gradientenabstiegsoptimierung zur Verbesserung des Kernel- Zielabgleichs konstruieren können		Х	
Vergleich der Quantenschaltk reisauswertung	Die Idee hinter der Quantenkern- Support-Vector-Machine-Funktion erläutern können	X		
en, die bei einem kernelbasierten und einem variablen Training	Die Anzahl der für eine Quanten- Kernel-Support-Vektor-Maschine erforderlichen Ausführungen unter Verwendung einer relevanten Funktion (z. B. der Penny-Lane-Funktion) untersuchen können		X	
erforderlich sind	Die Anzahl der Ausführungen mit einer kernelbasierten Methode und der Anzahl der Ausführungen, die für ein ähnliches Beispiel mit Variationslernen erforderlich sind wiedergeben können		X	
Neuronale Quar	ntennetzwerke			
Neuronale Netze - Grundlagen	Definieren können, was neuronale Netze sind und welche Bedeutung sie für maschinelles Lernen und künstliche Intelligenz haben	Х		
	Die grundlegenden Komponenten von neuronalen Netzen, wie Neuronen, Layer und Aktivierungsfunktionen beschreiben können	X		
	Den Trainingsprozess in neuronalen Netzen, einschließlich der grundlegenden Konzepte wie Backpropagation und Gradientenabstieg, wiedergeben können	X		
Praktischer Teil über Neuronale Netze	Den Prozess der Konstruktion eines grundlegenden neuronalen Feedforward-Netzwerks unter Verwendung eines Deep Learning Frameworks (z. B. TensorFlow oder PyTorch) abrufen und demonstrieren können	×		

Thema	Kompetenzen (Lernziele)	wisse n	anwe nden.	bewerte n
	Beschreiben, wie das Verständnis von Trainingstechniken wie Backpropagation und Gradientenabstieg zur effektiven Optimierung ihrer neuronalen Netzwerkmodelle beitragen kann.	×		
	Anwendung des Verständnisses für die Auswahl geeigneter Bewertungsmetriken und Bewertung der Leistung ihrer neuronalen Netzmodelle auf einem bestimmten Datensatz		Х	
Einführung in Quantenneuron ale Netze	Eine klare Definition von Quantenneuronalen Netzen nennen und erläutern können und erläutern können, wie sie sich von klassischen Neuronalen Netzen unterscheiden aufrufen und bereitstellen können	X		
	Praktischen Anwendungen und Bereiche erkennen können, in denen Quantenneuronale Netze Vorteile gegenüber klassischen Ansätzen bieten können	X		
	Den potenziellen Quantenvorteil benennen können, den Quantenneuronale Netze (QNNs) für verschiedene Problemlösungsszenarien bringen können.	×		
Praktischer Teil über einfache Quantenneuron ale Netze (QNNs)	Den Prozess der Erstellung eines einfachen Quantenneuronalen Netzes (QNN) unter Verwendung verfügbarer Quantenprogrammierwerkzeuge oder -rahmen beschreiben können	×		
	Das Konzept und die Bedeutung von Quantengattern in der Quanteninformatik und ihrer möglichen Anwendungen in neuronalen Quantennetzen erläutern können	X		
	Das Verhalten eines Quantenneuronalen Netzes auf einem Quantensimulator simulieren und die Ergebnisse interpretieren können	х	х	

ANLAGE M: »CERTIFIED DATA SCIENTIST SPECIALIZED IN EDGE AI«

ANLAGE M: »CERTIFIED DATA SCIENTIST SPECIALIZED IN EDGE AI«

M 1 Verweis auf andere Normen und Dokumente

■ EN ISO 17024

M 2 Anforderungsprofil

M 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil eines »Data Scientist Specialized in Edge Al« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Ein zertifizierter »Data Scientist Specialized in Edge Al«

- Ist informiert über die Methoden und Tools zur Entwicklung und Implementierung von Machine Learning-Anwendungen auf Mikrocontrollern (»Tiny Machine Learning (TinyML/Edge Al)«)
- ist in der Lage, die Herausforderungen und Lösungsansätze für die Implementierung von ML-Anwendungen auf Mikrocontrollern in einem Unternehmen zu erkennen, und passende Strategien zu entwickeln
- kennt konkrete Umsetzungsbeispiele von ML-Anwendungen auf Mikrocontrollern.
- kennt die wichtigsten technischen Aspekte von Edge AI, einschließlich der Entwicklung von ML-Modellen, der Implementierung auf Mikrocontrollern und der Optimierung für Betrieb und Leistung.

Abgrenzungskriterien des »Certified Data Scientist Specialized in Edge AI« gegenüber anderen Profilen im Bereich Data Science sind im Zertifizierungshandbuch dokumentiert.

Die Bezeichnung lautet: »Certified Data Scientist Specialized in Edge Al«

M 2.2 Zugangsvoraussetzungen

M 2.2.1 Vorbildungen

Ein zertifizierter »Data Scientist Specialized in Edge Al« muss nachweisen:

Ein erfolgreich abgeschlossenes Studium an

- einer deutschen wissenschaftlichen Hochschule,
- einer deutschen staatlichen oder staatlich anerkannten Fachhochschule oder
- einer von der zuständigen Stelle des Landes als gleichwertig anerkannten ausländischen Hochschule

oder

- eine mindestens einjährige Tätigkeit im Zusammenhang mit der Analyse von Daten im Unternehmensumfeld etwa im Bereich Edge Al
- oder eine mindestens einjährige Tätigkeit in Übereinstimmung mit dem Anforderungsprofil in Abschnitt M2.

Nachweis der Zulassungsvoraussetzungen:

Der Hoch-, Fachhoch- bzw. Fachschulabschluss wird nachgewiesen durch eine Kopie der Urkunde. Der Nachweis der Berufserfahrung sowie der zusätzlich geforderten Kenntnisse erfolgen durch die Bescheinigung des Arbeitgebers oder bei Selbstständigen durch eine eidesstattliche Erklärung.

Die Fraunhofer-Personenzertifizierungsstelle behält sich vor die Nachweise zu überprüfen. Nach Prüfung der eingereichten Unterlagen entscheidet die Fraunhofer-Personenzertifizierungsstelle über die Erfüllung der Voraussetzung. Sollten Zugangsvoraussetzungen nicht erfüllt sein, teilt die Fraunhofer-Personenzertifizierungsstelle dies dem Antragsteller unverzüglich über das Sekretariat der Fraunhofer-Personenzertifizierungsstelle mit.

Grundsätzlich kann die Fraunhofer-Personenzertifizierungsstelle in begründeten Ausnahmefällen davon abweichende Nachweise akzeptieren. Diese Nachweise und die Entscheidung der Fraunhofer-Personenzertifizierungsstelle sind zu dokumentieren.

Anmerkung:

Im zu prüfenden Einzelfall hat die antragstellende Person die Möglichkeit, fehlende Zugangsvoraussetzungen innerhalb von einem Jahr nach Ablegen der Prüfung nachzuweisen.

M 2.2.2 Zusätzliche Ausbildungen und praktische Anforderungen

Ein »Certified Data Scientist Specialized in Edge Al« muss keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

M 2.2.3 Persönliche Voraussetzungen

M 2.3 Geforderte Kompetenzen (Lernziele)

Die Grundlage für die Prüfung zum »Data Scientist Specialized in Edge Al« sind ausschließlich die folgenden aufgeführten Kompetenzen (Lernziele) im Bereich »Edge Al« und müssen durch eine schriftliche Prüfung nachgewiesen werden:

ANLAGE M: »CERTIFIED DATA SCIENTIST SPECIALIZED IN EDGE AI«

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
Anwendungen	Die TN können typische Beispiele für Anwendungen und Plattformen im Bereich eingebetteter Systemen nennen und beschreiben	Х	
TinyML/Edge AI Projektmanagement	Die TN können wichtige Rollen, Phasen und Tätigkeiten in TinyML/ Edge Al Projekten nennen und beschreiben	X	
Sensorik, Datenaufnahme	Die TN kennen den Aufbau eingebetter Sensorsysteme und können diesen beschreiben (Sensorelement, Analogfilter, Analog-Digital-Wandler (ADC), Prozessor)	X	
	Die TN können Anwendungsbeispiele von eingebetteten Sensorsystemen aus dem Kontext Internet of Things (IoT) nennen und beschreiben (z.B. Temperatur-, Gas- & Feuchtigkeitssensoren -> Umwelt- bzw. Luftüberwachung, Beschleunigungssensoren -> Vibrations- & Maschinenüberwachung)	X	
	Die TN kennen den Zusammenhang zwischen Abtastrate, Sensordatentyp und Speicherbedarf in Sensorsystemen und können diesen beschreiben	X	X
	Die TN können gängige Community Benchmarks und Datensätze im Bereich TinyML benennen und beschreiben (z.B. MLPerf Tiny etc.)	X	
Data Science auf dem PC	Die TN können die Schritte der Datenaufbereitung/Data- Preparation nennen und beschreiben	X	

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
	Die TN können typische Python- Pakete zur Datenvorverarbeitung und -visualisierung nennen und können mit diesen umgehen	Х	Х
	Die TN können die typischen Architekturen neuronaler Netze und deren Anwendungszweck nennen und beschreiben	X	
	Die TN können klassische Machine Learning Algorithmen nennen und beschreiben	X	
Machine & Deep Learning Grundlagen	Die TN können den Unterschied zwischen Künstlicher Intelligenz, Machine Learning und Deep Learning erklären	X	
	Die TN können sowohl für Klassifikation als auch Regression Metriken benennen und beschreiben	X	
	Die TN können die Ergebnisse des Modelltrainings interpretieren und kennen Methoden zur Verbesserung	X	X
	Die TN können den Unterschied zwischen Modellparametern und Hyperparametern erklären	X	
Machine & Deep Learning auf dem PC / Programmieren	Die TN können den grundlegenden Ablauf des Modelltrainings (Einlesen, Vorverarbeitung, Optimierung, Modell speichern) erläutern und umsetzen	X	X
	Die TN können den grundlegenden Ablauf der Modellanwendung (Einlesen, Vorverarbeitung, Modell laden, Modell anwenden) erläutern und umsetzen	X	X

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
Hardwarearchitekturen	Die TN kennen gängige Edge/Embedded Plattformen (z.B. Graphics Processing Unit (GPU), Mikroprozessor, Mikrocontroller, Field Programmable Gate Array (FPGA), Application-specific Integrated Circuit (ASIC), Tensor Processing Unit (TPU), Neural Processing Unit (NPU),), und können deren Vor-/Nachteile für die Anwendung von ML/DL nennen	X	
	Die TN kennen den Unterschied zwischen Edge Device und Cloud/Server und können diesen anhand eines Beispiels beschreiben (z.B. die Unterschiede in Hardware bzw. Software, Performance, Multicore)	X	
Embedded Programmierung, Debugging und Profiling	Die TN können ein minimales Softwarebeispiel in einer gängigen Programmiersprache für eingebettete Systeme (z.B. C oder MicroPython) implementieren, um Sensordaten in einem Sensorsystem auszulesen		X
	Die TN können typische Debugging-Schnittstellen (z.B. Joint Test Action Group (JTAG), In-System-Programmierung (ISP),) nennen und beschreiben	X	
	Die TN können den Begriff "Echtzeit" erläutern und können die Unterschiede zwischen Bare Metal, Echtzeitbetriebssystem und Betriebssystem nennen und beschreiben	Х	
	Die TN können Möglichkeiten benennen und beschreiben, um Hardwareressourcen/Laufzeit in der Applikation zu profilen (Integrierte Entwicklungsumgebung (IDE), Logikanalyzer, Power Monitoring- Chip, etc.)	X	

ANLAGE M: »CERTIFIED DATA SCIENTIST SPECIALIZED IN EDGE AI«

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
Kommunikation	Die TN können typische drahtlose und drahtgebundene Kommunikationsstandards (z.B. Bluetooth, LoRaWAN, UART, SPI, I2C,) für IoT-Sensorsysteme nennen und beschreiben	X	
	Die TN können beschreiben, wie Datensätze zielgerichtet mittels verteilter loT-Sensorsystem erzeugt werden können (z.B. Cloud-Anbindung, grundlegende Maschine-zu-Maschine- Kommunikation, MQTT, etc.)	X	
Machine & Deep Learning Inferenz auf dem Embedded Device	Die TN können die erforderlichen Schritte benennen und beschreiben, um KI-Modelle in Python zu KI- Modellen in C umzuwandeln	X	
	Die TN können Verfahren zur Optimierung von ML- und DL- Modellen für den Einsatz in eingebetteten Systemen nennen und beschreiben (z.B. Quantisierung, Pruning, Neural Architecture Search (NAS), Berechnungsparallelisierung, Grey-Boy Ansätze & Merkmalsextraktion, spezielle Netzarchitekturen,)	X	
	Die TN können ein neuronales Netz in Python (z.B. PyTorch oder Keras) in das AlfES-Format umwandeln und auf einem eingebetteten System ausführen		Х
Machine & Deep Learning Training auf dem Embedded Device	Die TN können Applikationen nennen und beschreiben für die das On- Device Training sinnvoll ist (Finetuning, Transfer Learning, Federated Learning, Selbstlernende Sensorsysteme, Personalisierbare KI, etc.)	X	

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
	Die TN können Optimierungsmöglichkeiten für das Training neuronale Netzer auf eingebetteten Systemen (z.B. Faltungsbeschleunigung, Datenvorfilterung, Inkrementelles Training etc.) nennen und beschreiben	X	
	Die TN können mit der Softwarebibliothek AlfES ein neuronales Netz auf einem eingebetteten System erstellen und trainieren		X
Einflussfaktoren auf den Ressourcenbedarf	Die TN können Einflussfaktoren auf den Ressourcenbedarf (wie Speicherbedarf, Latenz, Energiebedarf) bei der Ausführung von ML auf Tiny- Devices benennen	X	
	Die TN können den Ressourcenbedarf (wie Speicherbedarf, Latenz, Energiebedarf) bei der Ausführung von ML auf Tiny- Devices bestimmen		Х
Optimierung	Die TN haben ein Verständnis der Grundlagen von Ein-/ Mehrzieloptimierung	Х	X
	Die TN können Mehrzieloptimierung zur Optimierung von ML Modellen für eingebettet Hardware anwenden		X

ANLAGE M: »CERTIFIED DATA SCIENTIST SPECIALIZED IN EDGE AI«

ANLAGE N: »CERTIFIED DATA SCIENTIST SPECIALIZED IN TRUSTWORTHY AI«

- N 1 Verweis auf andere Normen und Dokumente
- EN ISO 17024

N 2 Anforderungsprofil

N 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil eines »Data Scientist Specialized in Trustworthy Al« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Ein zertifizierter »Data Scientist Specialized in Trustworthy Al«

- ist informiert darüber, wie Herausforderungen in Bezug auf verschiedene Handlungsfelder der KI-Absicherung auftreten können,
- ist sensibilisiert für den Trade-Off zwischen dem Angehen ethischer Problematiken sowie sicherheitsverwandten Aspekten einer KI-Anwendung in den verschiedenen Handlungsfeldern,
- kennt quantifizierbare Konzepte von Fairness, Verlässlichlichkeit, und Transparenz in Bezug auf KI-Anwendungen und kann Methoden in verschiedenen Stationen des Lebenszyklus einer KI-Anwendung nennen, um Fairness, Verlässlichkeit und Transparenz herzustellen und diese unter Verwendung einer geeigneten Metrik zu messen und
- kennt die Herausforderungen, Herangehensweise und Methoden im Kl-Anwendungen in Bezug auf Sicherheit und Datenschutz entwickeln und verbessern zu können.

Abgrenzungskriterien des »Certified Data Scientist Specialized in Trustworthy Al« gegenüber anderen Profilen im Bereich Data Science sind im Zertifizierungshandbuch dokumentiert.

Die Bezeichnung lautet: »Certified Data Scientist Specialized in Trustworthy Al«

N 2.2 Zugangsvoraussetzungen

N 2.2.1 Vorbildungen

Ein zertifizierter »Data Scientist Specialized in Trustworthy Al« muss nachweisen:

Ein erfolgreich abgeschlossenes Studium an

- einer deutschen wissenschaftlichen Hochschule,
- einer deutschen staatlichen oder staatlich anerkannten Fachhochschule oder
- einer von der zuständigen Stelle des Landes als gleichwertig anerkannten ausländischen Hochschule

oder

- eine mindestens einjährige Tätigkeit im Zusammenhang mit der Analyse von Daten im Unternehmensumfeld etwa im Bereich Trustworthy Al
- oder eine mindestens einjährige Tätigkeit in Übereinstimmung mit dem Anforderungsprofil in Abschnitt M2.

Nachweis der Zulassungsvoraussetzungen:

Der Hoch-, Fachhoch- bzw. Fachschulabschluss wird nachgewiesen durch eine Kopie der Urkunde. Der Nachweis der Berufserfahrung sowie der zusätzlich geforderten Kenntnisse erfolgen durch die Bescheinigung des Arbeitgebers oder bei Selbstständigen durch eine eidesstattliche Erklärung.

Die Fraunhofer-Personenzertifizierungsstelle behält sich vor die Nachweise zu überprüfen. Nach Prüfung der eingereichten Unterlagen entscheidet die Fraunhofer-Personenzertifizierungsstelle über die Erfüllung der Voraussetzung. Sollten Zugangsvoraussetzungen nicht erfüllt sein, teilt die Fraunhofer-Personenzertifizierungsstelle dies dem Antragsteller unverzüglich über das Sekretariat der Fraunhofer-Personenzertifizierungsstelle mit.

Grundsätzlich kann die Fraunhofer-Personenzertifizierungsstelle in begründeten Ausnahmefällen davon abweichende Nachweise akzeptieren. Diese Nachweise und die Entscheidung der Fraunhofer-Personenzertifizierungsstelle sind zu dokumentieren.

Anmerkung:

Im zu prüfenden Einzelfall hat die antragstellende Person die Möglichkeit, fehlende Zugangsvoraussetzungen innerhalb von einem Jahr nach Ablegen der Prüfung nachzuweisen.

N 2.2.2 Zusätzliche Ausbildungen und praktische Anforderungen

Ein »Certified Data Scientist Specialized in Trustworthy Al« muss keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

N 2.2.3 Persönliche Voraussetzungen

Keine.

Fraunhofer-Personenzertifizierungsstelle Zertifizierungshandbuch (Rev. 29) Data Science Gültig ab 20/05/2025

115 | 161

ANLAGE N: »CERTIFIED DATA SCIENTIST SPECIALIZED IN

TRUSTWORTHY AI«

N 2.3 Geforderte Kompetenzen (Lernziele)

Die Grundlage für die Prüfung zum »Data Scientist Specialized in Trustworthy Al« sind ausschließlich die folgenden aufgeführten Kompetenzen (Lernziele) im Bereich »Trustworthy Al« und müssen durch eine schriftliche Prüfung nachgewiesen werden:

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden		
Grundlagen der Absi	Grundlagen der Absicherung von KI-Anwendungen				
Einführung in Trustworthy Al					
Motivation und Status Quo des Themas Vertrauenswürdigkeit	Motivation zur Betrachtung vertrauenswürdiger Kl- Anwendungen anhand von Beispielen beschreiben können	Х			
Vertrauenswürdigkeit von KI- Anwendungen	Den aktuellen Stand der Entwicklung von Qualitätsstandards und Prüfverfahren bezüglich Kl- Anwendungen, inklusive der Veröffentlichungen der HLEG on Al, grob beschreiben können	Х			
	Herausforderungen bei der Erstellung von Standards und Zertifikaten, die sich spezifisch durch Eigenschaften von KI ergeben, nennen können	х			
Zertifizierung 'von Kl- Anwendungen	Die Begriffe Absicherung und Zertifizierung abgrenzen können	Х			
3	Eine mögliche Vorgehensweise zur Zertifizierung (Risikoanalyse/ Kriterien zur Zielerreichung/ Maßnahmen/ Gesamtbewertung) skizzieren können	х			
	Die für eine Zertifizierung von Kl- Anwendungen relevanten Handlungsbereiche nennen und die jeweiligen Kernfragen beschreiben können	х			
	Mögliche Implikationen durch Zertifizierbarkeit für Entwicklung und Betrieb von KI-Systemen nennen können	Х			

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
Aufbau einer KI- Anwendung	Grobe Struktur und "Lebenszyklus" einer KI-Anwendung (Datenauswahl/ Vorverarbeitung/ Modell/ Nachverarbeitung/ Einbettung/ Produktivbetrieb) beschreiben können	X	
Einführung in Modellbildung und Evaluierung	Relevante statistische Kennzahlen erklären können	Х	
Ethische und Recl	ntliche Aspekte von KI-Anwendungen		
Ethics & Autonon	nie und Kontrolle		
Ethics	Benennen können, inwieweit Ethische Aspekte bei der Entwicklung von KI- Anwendungen zu berücksichtigen sind	X	
	Die Beispiele für ethische relevante Probleme in der KI und Möglichkeiten zur Mitigation dieser Probleme in der Praxis nennen können	Х	
Autonomy and Control	Den Autonomiebegriff im Kontext von KI-Anwendungen erklären und einordnen können	Х	
Fairness			
Motivation des Konzepts Fairness im Kontext von KI-Anwendungen	Die Relevanz von Fairness in KI- Anwendungen anhand konkreter Beispiele, in denen KI-Komponenten zu Diskriminierung geführt haben, beschreiben können	х	
	Einsatzbereiche von KI nennen können, bei denen Anwender und Entwickler in puncto Fairness besonders sensibilisiert sein müssen	Х	
	Etwaige Komplementarität von Fairness zu anderen Handlungsbereichen beschreiben können (wie beispielsweise der Trade-Off mit Verlässlichkeit/ Performanz)	X	
	Gesetzliche Vorgaben zum Thema Fairness/ Diskriminierung nennen können, die für den Einsatz von KI-Anwendungen relevant sind	Х	

ANLAGE N: »CERTIFIED DATA SCIENTIST SPECIALIZED IN TRUSTWORTHY AI«

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
Ansätze zur Definition von Fairness im Kontext einer	Verschiedene Ansätze zur Festlegung einer Fairness-Definition für KI-Anwendungen kennen und in den situativen Kontext der KI-Anwendung einordnen können	х	
KI-Anwendung und Metriken zur Abbildung von Fairness	Verschiedene quantifizierbare Fairness- Begriffe (z.B. Gruppenfairness/ Unawareness) beschreiben und damit verbundene Problematiken sowie Vor- und Nachteile der jeweiligen Definition erläutern können	Х	X
	Konkrete Metriken zum Messen von Fairness einer KI-Anwendung kennen und deren Eigenschaften beschreiben können (z.B. Statistical Parity, Equalized Odds, Individual Fairness)	Х	X
Verfahren und Maßnahmen im Lebenszyklus einer KI- Komponente,	Die Rolle der Datenvorverarbeitung für den Bereich Fairness erläutern können, sowie Verfahren zur Bewertung und Bereinigung von Daten im Hinblick auf Bias beschreiben können	Х	
um die Fairness in Angriff zu nehmen	Methoden einer fairen Modellbildung kennen und erläutern können	Х	
	Maßnahmen zur Nachbearbeitung und Inbetriebnahme unter Berücksichtigung von Fairnessaspekten kennen und erläutern können	Х	
Datenschutz			
Einführung in das Thema Datenschutz im	Ziel des Datenschutzes erläutern können und ihn von Datensicherheit abgrenzen können	Х	
Kontext von KI- Anwendungen	Bedeutung und Beispiele von personenbezogenen Daten wiedergeben können	X	
	Unterschied zwischen Anonymisierung und Pseudonymisierung erklären können	Χ	
	Begriff des Quasi-Identifikators erläutern können und das von ihnen ausgehende Risiko beschreiben können	X	
	Datenschutzrelevante Angriffspunkte einer KI-Anwendung benennen können	Х	
	Herausforderungen des Datenschutzes im Kontext von KI-Anwendungen schildern können	Х	

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden
Gesetzliche Vorgaben zum Thema	Grundsätze für die Verarbeitung personenbezogener Daten nennen und beschreiben können	х	
Datenschutz im Rahmen der DSGVO	Unterschied zwischen den Konzepten Datenschutz "by design" und "by default" erklären können	Х	
	Herausforderungen für KI-Anwendungen durch die Grundsätze für die Verarbeitung personenbezogener Daten ausführen können	X	
Datenschutz- Risikoeinschätzung einer KI- Anwendung	Die Vorgehensweise zur Datenschutz- Risikobeurteilung einer KI-Anwendung beschreiben können	Х	
Techniken und Algorithmen zur Reduzierung von Datenschutzrisiken	Ansätze zur Reduzierung von Datenschutzrisiken einer KI-Anwendung nennen und beschreiben können	Х	
einer KI-	Konzept der k-Anonymität erklären und anwenden können	х	x
Anwendung	Limitationen der k-Anonymität nennen können und erweiternde Verfahren beschreiben können	Х	
	Konzept der Differential Privacy erläutern können	Х	
Sicherheit			
Einführung in das Thema Sicherheit	Sicherheits-Schutzziele einer KI-Anwendung nennen und erklären können	Х	
im Kontext von Kl- Anwendungen	Mögliche Ursachen für Sicherheitsrisiken einer KI-Anwendung angeben können	Х	
7 thwendangen	Sicherheitsrelevante Angriffspunkte einer KI-Anwendung benennen können	Х	
	Herausforderungen der Sicherheit im Kontext von KI-Anwendungen schildern können	Х	
Sicherheits- Risikoeinschätzung einer KI- Anwendung	Prozess der Sicherheits-Risikoeinschätzung einer KI-Anwendung beschreiben können	Х	
Techniken und Maßnahmen zur Reduzierung von	Ansätze zur Reduzierung von Sicherheitsrisiken einer KI-Anwendung nennen und beschreiben können	Х	
Sicherheitsrisiken einer KI- Anwendung	Ansätze zur Reduzierung von Risiken, die die Integrität und Vertraulichkeit einer Kl- Anwendung betreffen, nennen und beschreiben könne	Х	

ANLAGE N: »CERTIFIED DATA SCIENTIST SPECIALIZED IN TRUSTWORTHY AI«

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden
	Ansätze zur Reduzierung von Risiken, die die Verfügbarkeit einer Kl-Anwendung betreffen, nennen und beschreiben können	X	
Verlässlichkeit			
Motivation für Verlässlichkeit im KI-	Die Definition von Verlässlichkeit im Kontext von Maschinellem Lernen kennen	Х	
Sicherheitskontext	Gründe für unzuverlässiger KI-Module mit Beispielen beschreiben können	Х	
	Den Zusammenhang und die Unterschiede zwischen Verlässlichkeit und Performance Metriken beschreiben können	Х	
Adversarial Examples im	Die Definition von Adversarial Examples kennen	Х	
Zusammenhang mit Verlässlichkeit	Gründe für die Existenz von Adversarial Examples benennen können	Х	
THE VEHICLE INC.	Die Funktionsweise einiger Adversarial Attacks beschreiben können	Х	
	Beispielhafte Abschwächungsstrategien (wie Data Augmentation, Model distillation) gegen Adversarial Attacks kennen und erläutern können	Х	
Quantifizierung und Reduzierung	Die verschiedenen Arten von Unsicherheit in KI- Modulen kennen	Х	
von Unsicherheit in KI-Modulen im Kontext der	Metriken zur Quantifizierung von Unsicherheit erklären und anwenden können	Х	Х
Verlässlichkeit	Methoden um Unsicherheitseinschätzungen in Modelle einzubauen kennen und beschrieben können	Х	
Ansätze zur Messung und Verbesserung der	Verschiedener Robustheitsziele kennen und erklären können	Х	
Robustheit von Kl- Modulen im Kontext der Verlässlichkeit	Methoden zur Erhöhung der Robustheit für verschiedene Ziele erklären können	Х	
Transparenz			
Motivation und Definitionen des	Die Ziele der Durchsetzung von Transparenz nennen und erklären können	Х	
Konzepts Transparenz im Kontext von KI- Anwendungen	Aspekte nennen und erklären können, die Transparenz von KI-Anwendungen motivieren (soziale Perspektive, software perspective, algorithmische Perspektive)	Х	
Definition der Interpretierbarkeit	Erklären können wie Modelle an sich interpretierbar sind und Beispiele dafür nennen können	Х	

Wissensgebiet	Kompetenzen/Lernziele	kennen	an- wenden
	Die Begriffe Interpretation und Erklärung, Post-hoc Interpretation, modellunabhängigen und modellspezifischen Interpretationsmethoden erklären und Beispiele dafür nennen können	X	
Interpretierbarkeitsansätze	Methoden zur Interpretation, Erklärung und Interpretierbarkeit Integration erklären und anwenden können	Х	Х
Metrics and evaluation	Erklären können wie Interpretierbarkeit mit menschlicher Bewertung evaluiert und aus sozialer Sicht bewertet werden kann	Х	
	Wünschenswerte Eigenschaften von Erklärungen nennen und beschreiben können	Х	

ANLAGE N: »CERTIFIED DATA SCIENTIST SPECIALIZED IN TRUSTWORTHY AI«

ANLAGE O: »CERTIFIED DATA SCIENTIST ADVANCED LEVEL«

O 1 Verweis auf andere Normen und Dokumente

■ EN ISO 17024

O 2 Anforderungsprofil

O 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil eines »Certified Data Scientist Advanced Level« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Ein zertifizierter »Data Scientist Advanced Level«

- hat einen Überblick über die Data Science-Wertschöpfungskette,
- kann geeignete Methodik identifizieren, um Data Science Projekte im Allgemeinen und im Spezialgebiet durchzuführen,
- kann Methoden aus dem Bereich Data Science und in seinem Spezialgebiet anwenden und
- wendet Data Science-Methoden im beruflichen Kontext an.

Abgrenzungskriterien des »Certified Data Scientist Advanced Level« gegenüber anderen Profilen im Bereich Data Science sind im Zertifizierungshandbuch dokumentiert.

Die Bezeichnung lautet: »Certified Data Scientist Advanced Level«

O 2.2 Zugangsvoraussetzungen

O 2.2.1 Vorbildungen

Ein zertifizierter »Certified Data Scientist Advanced Level« muss nachweisen:

folgende Zertifikate

- Entweder das Zertifikat »Certified Data Scientist Basic Level« plus eines der Zertifikate zum »Certified Data Scientist Specialized in »Name der Spezialisierung« vorliegen.
- oder drei Zertifikate zum »Certified Data Scientist Specialized in »Name der Spezialisierung«,
- oder das Zertifikat »Certified Data Scientist Basic Level« plus drei vom Fachausschuss Data Science- anerkannte Mikro-Zertifikate,
- oder zwei Zertifikate »Certified Data Scientist Specialized in »Name der Spezialisierung« plus drei vom Fachausschuss Data Science anerkannte Mikro-Zertifkate

und

- eine mindestens einjährige Berufserfahrung mit der Durchführung von Data Science Projekten **und** die Beschreibung der durchgeführten Tätigkeiten in einem mindestens zweimonatigen Data Science Projekt.

ANLAGE O: »CERTIFIED DATA SCIENTIST ADVANCED LEVEL«

Art der Nachweise siehe unten.

Anmerkung:

Im zu prüfenden Einzelfall hat die antragstellende Person die Möglichkeit, fehlende Zugangsvoraussetzungen innerhalb von einem Jahr nach Ablegen der Prüfung nachzuweisen.

Der Nachweis der Berufserfahrung erfolgt

1.) über eine Bescheinigung des Arbeitgebers, die eine einjährige Tätigkeit im Bereich Data Science unter Angabe der durchgeführten Projekte und ausgeführten Tätigkeiten bestätigt oder bei Selbstständigen eine eidesstattliche Erklärung

und

2.) über eine Beschreibung der durchgeführten Tätigkeiten in einem mindestens zweimonatigen Data Science Projekt auf zwei bis drei DIN A 4 Seiten. Diese Tätigkeiten müssen vom Arbeitgeber bescheinigt werden.

Die Beschreibung sollte folgende Aspekte beinhalten:

- Kurze Zusammenfassung des Projektes mit der Beantwortung folgender Fragen (Maximal 0,5 Seiten):
 - Was war das Thema des Projekts?
 - Von wann bis wann lief das Projekt?
 - Was war der Business Case, was waren die Ziele des Projektes?
 - Welche Aktivitäten wurden in dem Projekt durchgeführt?
 - Was an dem Projekt war Data Science?
- Einordnung in die Data Science Landschaft (1 Seite): (Falls folgende Punkte nicht anwendbar sind, begründen Sie bitte jeweils in einem Satz, warum nicht.)
 - Verortung der Aktivitäten im CRISP-DM mit der Beantwortung folgender Fragen:
 - Welche Aktivitäten wurden im Bereich Business Understanding durchgeführt und was waren die Ergebnisse?
 - Welche Aktivitäten wurden im Bereich Data Understanding durchgeführt und was waren die Ergebnisse?
 - Welche Aktivitäten wurden im Bereich Data Preparation durchgeführt und was waren die Ergebnisse?
 - Welche Aktivitäten wurden im Bereich Modeling durchgeführt und was waren die Ergebnisse?
 - Welche Aktivitäten wurden im Bereich Evaluation durchgeführt und was waren die Ergebnisse?
 - Welche Aktivitäten wurden im Bereich Deployment durchgeführt und was waren die Ergebnisse?
 - Welche Big-Data Systeme wurden verwendet? Begründen Sie Ihre Auswahl.
 - Welche Visualisierungen haben Sie verwendet und mit welchem Ziel?
 - Welche Security und Privacy Aspekte haben Sie in Ihrem Projekt adressiert?
- Beschreibung des Spezialgebietes (1,5 Seiten)
 - Was war die konkrete Aufgabenstellung im Spezialgebiet?

- Darstellung der genauen Methodik mit erwogenen Alternativen und Begründung der finalen Auswahl.
- Beschreibung der Umsetzung und (möglicher) aufgetretener Probleme
- Beschreibung der Ergebnisse
- Diskussion und Fazit

Die Fraunhofer-Personenzertifizierungsstelle behält sich vor die Angaben zu überprüfen. Nach Prüfung der eingereichten Unterlagen entscheidet die Fraunhofer-Personenzertifizierungsstelle über die Erfüllung der Voraussetzung. Sollten Zugangsvoraussetzungen nicht erfüllt sein, teilt die Fraunhofer-Personenzertifizierungsstelle dies dem Antragsteller unverzüglich über das Sekretariat der Fraunhofer-Personenzertifizierungsstelle mit.

Grundsätzlich kann die Fraunhofer-Personenzertifizierungsstelle in begründeten Ausnahmefällen davon abweichende Nachweise akzeptieren. Diese Nachweise und die Entscheidung der Fraunhofer-Personenzertifizierungsstelle sind zu dokumentieren.

O 2.2.2 Zusätzliche Ausbildungen und praktische Tätigkeiten

Ein »Certified Data Scientist Advanced Level« muss keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

O 2.2.3 Persönliche Voraussetzungen

Keine.

O 2.3 Geforderte Kompetenzen (Lernziele)

Im Zertifizierungsprofil »Data Scientist Advanced Level« entsprechen die geforderten Kompetenzen denen in den als Zulassungsvoraussetzung nachzuweisenden Zertifikaten. Zusätzlich wird über den Nachweis von Berufserfahrung u. a. im Rahmen der Beschreibung eines Projekts überprüft, ob die geforderten Kompetenzen in der Praxis Anwendung finden.

Das Zertifikat wird vergeben, wenn die Zulassungsvoraussetzungen erfüllt sind.

ANLAGE P: »CERTIFIED SENIOR DATA SCIENTIST«

ANLAGE P: »CERTIFIED SENIOR DATA SCIENTIST«

P 1 Verweis auf andere Normen und Dokumente

■ EN ISO 17024

P 2 Anforderungsprofil

P 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil eines »Certified Senior Data Scientist« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Ein zertifizierter »Senior Data Scientist«

- hat einen umfassenden Überblick über die Data Science-Wertschöpfungskette,
- beherrscht die Methoden des Data Science und in seinem Spezialgebiet,
- wendet die Data Science-Methoden im beruflichen Kontext zielgerichtet und effizient an,
- plant Data Science-Projekte und
- berät Stakeholder bei der Planung, Durchführung und Auswertung von Data Science-Projekten.

Abgrenzungskriterien des »Certified Senior Data Scientist« gegenüber anderen Profilen im Bereich Data Science sind im Zertifizierungshandbuch dokumentiert.

Die Bezeichnung lautet: »Certified Senior Data Scientist«

P 2.2 Zugangsvoraussetzungen

P 2.2.1 Vorbildungen

Ein zertifizierter »Senior Data Scientist« muss nachweisen:

- das Zertifikat als »Certified Data Scientist Advanced Level«,
- mindestens zwei Jahre Berufserfahrung mit der Durchführung von Data Science Projekten und
- eine eigenständig verfasste Studienarbeit über ein von der Fraunhofer-Personenzertifizierungsstelle zugelassenes Thema (Umfang ca. 40 DIN A 4 Seiten).

Anmerkung:

Im zu prüfenden Einzelfall hat die antragstellende Person die Möglichkeit, fehlende Berufserfahrung innerhalb von einem Jahr nach Ablegen der Prüfung nachzuweisen.

Der Nachweis der Berufserfahrung erfolgt über eine Bescheinigung des Arbeitgebers, die eine zweijährige Tätigkeit im Bereich Data Science unter Angabe der durchgeführten Projekte und ausgeführten Tätigkeiten bestätigt

Die Fraunhofer-Personenzertifizierungsstelle behält sich vor die Angaben zu überprüfen. Nach Prüfung der eingereichten Unterlagen entscheidet die Fraunhofer-Personenzertifizierungsstelle über die Erfüllung der Voraussetzung.

Fraunhofer-Personenzertifizierungsstelle Zertifizierungshandbuch (Rev. 29) Data Science Gültig ab 20/05/2025

Sollten Zugangsvoraussetzungen nicht erfüllt sein, teilt die Fraunhofer-Personenzertifizierungsstelle dies dem Antragsteller unverzüglich über das Sekretariat der Fraunhofer-Personenzertifizierungsstelle mit.

Grundsätzlich kann die Fraunhofer-Personenzertifizierungsstelle in begründeten Ausnahmefällen davon abweichende Nachweise akzeptieren. Diese Nachweise und die Entscheidung der Fraunhofer-Personenzertifizierungsstelle sind zu dokumentieren.

Anforderungen an die Studienarbeit

Das Thema der Studienarbeit kann grundsätzlich frei aus dem Themenfeld Data Science gewählt werden, sofern es den unten stehenden Anforderungen genügt. Die Fraunhofer-Personenzertifizierungsstelle muss dem Thema zustimmen. Hierfür reicht der Teilnehmer ein Exposé ein. Dieses wird von der Fraunhofer-Personenzertifizierungsstelle geprüft.

Nach Zustimmung zum Exposé durch die Fraunhofer-Personenzertifizierungsstelle haben die Teilnehmer ein Jahr Zeit, das Thema zu bearbeiten und die Arbeit einzureichen. Es besteht jedoch auch die Möglichkeit ein Thema für eine Arbeit einzureichen, das der Teilnehmer bereits bearbeitet hat oder gerade bearbeitet. Bei Einreichung des Exposés darf der Abschluss der Arbeit allerdings nicht länger als ein Jahr her sein.

Eine Verlängerung der Einreichungsfrist ist nur in begründeten Ausnahmefällen mit Zustimmung der Leitung der Fraunhofer-Personenzertifizierungsstelle möglich.

Nach Einreichung der fertigen Arbeit prüft ein Prüfer der Fraunhofer-Personenzertifizierungsstelle, ob die Studienarbeit die Anforderungen erfüllt und spricht eine Empfehlung über die Anerkennung als Zugangsvoraussetzung für die mündliche Prüfung aus.

Insbesondere wird Wert darauf gelegt, dass es sich beim Verfassen der Arbeit um eine erkennbar eigenständige Leistung handelt. Plagiate werden nicht anerkannt. Die Begleitung der Projektarbeit durch einen Mentor ist gestattet.

Hat die Fraunhofer-Personenzertifizierungsstelle die Studienarbeit anerkannt und die übrigen Zulassungsvoraussetzungen sind ebenfalls erfüllt, wird der Teilnehmer zur Prüfung zugelassen.

Folgende **Inhalte und Gliederung** der ca. 40 Seiten umfassenden Arbeit werden erwartet:

1. Einleitung / Einführung des Themas

Aus der Einleitung sollte die Aufgabenstellung klar hervorgehen und gut motiviert werden. Sie sollte wenigstens folgende Punkte abdecken:

- Formulierung der Aufgabenstellung: Ausgangssituation und Ziele
- Motivation der Aufgabe: Herausforderungen und Neuigkeit, warum ist die Aufgabenstellung interessant und für wen? Welcher Wert wird der Lösung beigemessen?

2. Einordnung des speziellen Aufgabengebiets in den Kontext Data Science

In diesem Abschnitt sollen Aufgabe und Lösungsansätze in den Kontext existierender Ansätze im Bereich Data Science gestellt und auch alternative Lösungswege, die nicht beschritten wurden, dargestellt werden. Zunächst soll der Zusammenhang zu den Themen der Zertifizierung dargestellt werden: Wie und an welcher Stelle bestehen Zusammenhänge insbesondere zu folgenden Themengebieten?

ANLAGE P: »CERTIFIED SENIOR DATA SCIENTIST«

- (Big) Data Analytics
- Big Data Systems
- Security and Privacy
- Data Management
- Big Data Potentials
- Visualisierung

Anschließend soll die Arbeit auch im Kontext des erworbenen Spezialisten-Zertifikats (z. B. "Data Scientist Specialized in Data Management", "Data Scientist Specialized in Data Analytics" oder "Data Scientist Specialized in Deep Learning") im Hinblick auf die gewählte Vertiefung beleuchtet werden.

3. Herangehensweise an die Aufgabe/Fragestellung

Der Lösungsweg soll hier allgemeinverständlich und detailliert beschrieben werden.

Dabei soll auch die Verwendung bestehender Verfahren und Werkzeuge dokumentiert und in den Lösungsweg eingeordnet werden.

4. Evaluation

In diesem Abschnitt soll die Basis für die Bewertung der Güte der gefundenen Lösung gelegt werden. Dazu sollen geeignete Performance-Indikatoren ausgewählt, deren Auswahl begründet und die entsprechenden Ausprägungen bestimmt werden. Wo sinnvoll soll ein Vergleich zu alternativen Verfahren bzw. zu einer Baseline erfolgen.

5. Rekapitulation und Abschlussthese

Abschließend soll die Arbeit zusammenfassend dargestellt und bewertet werden.

Anmerkung: Bei der Erstellung der Arbeit sollte darauf geachtet werden, dass Formatierung und Zitierweise den Anforderungen wissenschaftlichen Arbeitens genügen. Der Inhalt der Arbeit muss explizit keinen wissenschaftlich-innovativen Charakter haben, wie dies beispielsweise bei einer Bachelor- oder Masterarbeit gefordert wird

P 2.2.2 Zusätzliche Ausbildungen/Berechtigungen und praktische Tätigkeiten

Ein »Certified Senior Data Scientist« muss keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

P 2.2.3 Persönliche Voraussetzungen

Keine.

P 2.3 Geforderte Kompetenzen (Lernziele)

Grundlage für die Bewertung der Projektarbeit sowie die mündliche Prüfung zum »Certified Senior Data Scientist« sind folgende nachzuweisende Kompetenzen (Lernziele):

Wissens- gebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
	Eine komplexe Data Science Aufgabenstellung unter Anwendung von Techniken aus dem Themenbereich des Zertifizierungsprogramms Data Science. lösen können	х	х	х
	Die Aufgabenstellung in den Kontext von Data Science einordnen können, insbesondere in die Themenfelder des Zertifikats "Data Scientist Basic Level" und der gewählten Spezialisierung (z.B. Data Scientist Specialized in Data Management, Data Scientist Specialized in Data Analytics oder Data Scientist Specialized in Deep Learning").	X	X	X
	Die Aufgabenstellung in einen (möglicherweise fiktiven) unternehmerischen Kontext einordnen können	X	х	X
	Den Lösungsweg für Personen mit einem Wissensstand auf dem Niveau eines "Zertifizierten Data Scientist Basic Level" schriftlich darstellen können.	X	х	х
	Die Güte der gefundenen Lösung erläutern und bewerten können.	Х	х	X

ANLAGE Q: »DATA SCIENTIST SPECIALIZED IN THE EU AI ACT«

ANLAGE Q: »DATA SCIENTIST SPECIALIZED IN THE EU AI ACT«

O 1 Verweis auf andere Normen und Dokumente

■ EN ISO 17024

Q 2 Anforderungsprofil

Q 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil eines »Data Scientist Specialized in the EU AI Act« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Ein zertifizierter »Data Scientist Specialized in the EU AI Act«

- Kann die Zielsetzung und Systematik der EU KI-Verordnung erläutern.
- Kennt das Rollenkonzept, die KI-Definition sowie die Risikoklassifikation von KI-Systemen aus der KI-Verordnung und kann diese auf konkrete Anwendungsfälle anwenden.
- Kann die technischen Anforderungen der EU KI-Verordnung an KI-Systeme in Hinblick auf menschliche Aufsicht, Transparenz, Datenqualität, Accuracy, Cybersecurity und Robustheit sowie Nicht-Diskriminierung erläutern und kennt Methoden, die in verschiedenen Stationen des Lebenszyklus einer KI-Anwendung dazu beitragen, diese Anforderungen zu erfüllen.
- Kann die Anforderungen der EU KI-Verordnung an GPAI (General Purpose KI) Systeme sowie den Zusammenhang mit darauf basierenden KI-Systemen erläutern.
- Kann die Konformitäts-Anforderungen der EU KI-Verordnung an Unternehmensprozesse zum Qualitäts- und Risikomanagement erläutern und kennt Ansätze, diese in Management-Systemen und Entwicklungsprozessen umzusetzen.
- Kennt Verfahren (Konzepte, Frameworks) zur systematischen Risiko-Bewertung von KI-Systemen und kann zwischen KI-Risiken und systemischen Risiken (im Sinne der EU KI-Verordnung) unterscheiden.

Abgrenzungskriterien des »Certified Data Scientist Specialized in the EU AI Act« gegenüber anderen Profilen im Bereich Data Science sind im Zertifizierungshandbuch dokumentiert.

Die Bezeichnung lautet: »Certified Data Scientist Specialized in the EU AI Act«

Q 2.2 Zugangsvoraussetzungen

Q 2.2.1 Vorbildungen

Ein zertifizierter »Data Scientist Specialized in the EU AI Act« muss nachweisen:

Ein erfolgreich abgeschlossenes Studium an

- einer deutschen wissenschaftlichen Hochschule,
- einer deutschen staatlichen oder staatlich anerkannten Fachhochschule oder

Fraunhofer-Personenzertifizierungsstelle Zertifizierungshandbuch (Rev. 29) Data Science ■ einer von der zuständigen Stelle des Landes als gleichwertig anerkannten ausländischen Hochschule

oder

- eine mindestens einjährige Tätigkeit im Zusammenhang mit der Analyse von Daten im Unternehmensumfeld etwa im Bereich EU AI Act
- oder eine mindestens einjährige Tätigkeit in Übereinstimmung mit dem Anforderungsprofil in Abschnitt M2.

Nachweis der Zulassungsvoraussetzungen:

Der Hoch-, Fachhoch- bzw. Fachschulabschluss wird nachgewiesen durch eine Kopie der Urkunde. Der Nachweis der Berufserfahrung sowie der zusätzlich geforderten Kenntnisse erfolgen durch die Bescheinigung des Arbeitgebers oder bei Selbstständigen durch eine eidesstattliche Erklärung.

Die Fraunhofer-Personenzertifizierungsstelle behält sich vor die Nachweise zu überprüfen. Nach Prüfung der eingereichten Unterlagen entscheidet die Fraunhofer-Personenzertifizierungsstelle über die Erfüllung der Voraussetzung. Sollten Zugangsvoraussetzungen nicht erfüllt sein, teilt die Fraunhofer-Personenzertifizierungsstelle dies dem Antragsteller unverzüglich über das Sekretariat der Fraunhofer-Personenzertifizierungsstelle mit.

Grundsätzlich kann die Fraunhofer-Personenzertifizierungsstelle in begründeten Ausnahmefällen davon abweichende Nachweise akzeptieren. Diese Nachweise und die Entscheidung der Fraunhofer-Personenzertifizierungsstelle sind zu dokumentieren.

Anmerkung:

Im zu prüfenden Einzelfall hat die antragstellende Person die Möglichkeit, fehlende Zugangsvoraussetzungen innerhalb von einem Jahr nach Ablegen der Prüfung nachzuweisen.

Q 2.2.2 Zusätzliche Ausbildungen/Berechtigungen und praktische Tätigkeiten

Ein »Certified Data Scientist Specialized in the EU Al Act« muss keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

Q 2.2.3 Persönliche Voraussetzungen

Keine.

Die Grundlage für die Prüfung zum »Data Scientist Specialized in the EU AI Act« sind ausschließlich die folgenden aufgeführten Kompetenzen (Lernziele) im Bereich »EU AI Act« und müssen durch eine schriftliche Prüfung nachgewiesen werden:

Themenbereich	Kompetenzen (Lernziele)	Kenne n	anwend en
Grundlagen der EU KI-Verordnung			
Motivation und Zielsetzung der EU KI- Verordnung	 Das Zusammenspiel zwischen der Kl- Verordnung, technischen Standards und Prüfframeworks erläutern können Die Konzeption des "neuen" EU Rechtsrahmens in Bezug auf horizontale und vertikale Regulierung erläutern können. 	x	
Geltungsbereich und Rollenkonzept der EU KI-Verordnung	 Den räumlichen Anwendungsbereich der KI-Verordnung (mit Sitzlandprinzip und Marktortprinzip) benennen und den extraterritorialen Einfluss erläutern können Die Merkmale zur Bestimmung des sachlichen Anwendungsbereiches der EU KI-Verordnung beschreiben und anwenden können Den persönlichen Anwendungsbereich benennen können und insbesondere zwischen den Rollen Anbieter- und Betreiber von KI-Systemen im Sinne der EU KI-Verordnung unterscheiden können. Die Anwendbarkeit (räumlichen, sachlichen, persönlichen Anwendungsbereich) der EU KI-Verordnung in use-cases ermitteln können. 	x	x
Risikoklassifikation der EU KI-Verordnung	 Merkmale zur Unterscheidung zwischen KI-Systemen und Nicht-KI Systemen im Sinne der EU KI-Verordnung bestimmen können und die Unterscheidung in Use-Cases vornehmen können Die Vorgehensweise zur Ermittlung der Risikostufe (Verboten, Hoch, Begrenzt, Gering) eines KI-Systems erläutern und in Use-Cases anwenden können. Die Ausnahmeregelung benennen können, wann Hoch-Risiko KI-Systeme nicht unter die KI-Verordnung fallen und dies im Rahmen einer Use-Case Evaluierung anwenden können 	X	х

Anforderungen an GPAI ¹ Modelle in der EU KI Verordnung	 Zwischen GPAI Modellen und KI- Systemen unterscheiden können. Die prinzipiellen Anforderungen an GPAI Modelle erläutern können. 	Х	
Konformität und Zertifizierung	 Die unterschiedlichen Konformitätsanforderungen für die verschiedenen Risikoeinstufungen benennen können. Die Rolle der notifizierten Stelle im Rahmen der Konformitätsbewertung erläutern können Die Unterschiede zwischen interner und externer Zertifizierung im Kontext der EU KI-Verordnung erläutern können 	Х	
Umsetzung technischer Anforderungen der EU KI-Verordnung			
Daten und Daten- Governance	 Die allgemeinen Schritte der Datenerhebung, Datenaufbereitung und Sicherung der Datenqualität beschreiben können. Die Bedeutung von Trainings-, Validierungs-, und Test-Daten im Kontext der Entwicklung von Kl-Anwendungen erläutern können. Risiken in Bezug auf den Schutz personenbezogener Daten beschreiben können. Risiken in Bezug auf Bias und Diskriminierung (Fairness) in Kl-Anwendungen beschreiben und bewerten können. Risiken in Bezug auf die Datenabdeckung beschreiben und bewerten können. Beispiele für Maßnahmen benennen können, die die Risiken in Bezug auf Datenschutz, Fairness, sowie mangelnde Datenabdeckung abschwächen. 	X	X
Menschliche Aufsicht	 Den Autonomiebegriff im Kontext von KI-Anwendungen erklären und einordnen können. Den Grad der Autonomie von KI-Systemen bestimmen können. Maßnahmen zur Minderung von Risiken in Bezug auf die menschliche Aufsicht nennen können. 	х	

¹ GPAI: General Purpuse AI, KI Systeme mit allgemeinen Verwendungszweck

Genauigkeit, Robustheit und Cybersicherheit	 Metriken für die Bestimmung der Genauigkeit von KI-Systemen beschreiben können. Die Aussagekraft von Metriken in Bezug auf die Zweckbestimmung von KI-Systemen bewerten können (beispielhaft). KI-spezifische Risiken "Data Poisoning, adversiale Attacken, in Bezug auf Robustheit und Cybersicherheit von KI-Systemen beschreiben können Beispiele von technischen Maßnahmen 	х	1	: »Data scientist D in the Eu ai act«
	aus verschiedenen Phasen des KI- Lebenszyklus zur Erhöhung von Genauigkeit, Robustheit und Cybersicherheit beschreiben können.			
Transparenz- und Aufzeichnungs- anforderungen	 Konzepte und (beispielhaft) Verfahren zur Erklärbarkeit und Interpretierbarkeit von KI-Modellen beschreiben können und diese in Hinblick auf die Transparenz-Anforderungen der EU KI-Verordnung einordnen können. Die Aufzeichnungspflichten der KI-Verordnung benennen und im Zusammenhang mit Datenschutz einordnen können. 	Х		
Einsatz von GPAI Modelle	 Die Funktionsprinzipien von GPAI Modellen erläutern können. Verfahren zur Erstellung (zweckgebundender) KI-Systeme auf Basis von GPAI Modellen beschreiben können (zum Beispiel Fine-Tuning und Few-Shot Learning). Beispiele für spezielle Ausprägungen von Risiken für GPAI Modelle (zum Beispiel Halluzinationen, falsche Erklärungen, toxische Sprache) nennen können. Den Zusammenhang zwischen dem "systemischen" Risiko von GPAI Modellen und den KI-Risiken und der Risikoeinstufung (zweckgebundenen) KI-Systeme erläutern können. Die Bedeutung von Benchmarks für GPAI Modelle erläutern können. 	X	X	
Umsetzung prozessualer Anforderungen der EU KI-Verordnung				
Allgemeine Konzepte der Unternehmensgoverna nce	 Grundkonzepte von Compliance und Governance in Unternehmen erläutern können Die wichtigsten Stakeholder eines KI Governance Systems erläutern können 	х		

Risikomanagement	Den Risiko-Begriff aus	х	
	Unternehmensperspektive und in Bezug zum EU AI Act erläutern können. • Die allgemeinen Aufgaben und Funktion des Risiko-Managements in Unternehmen erläutern könnten (Risikobewertung, Risikoabschwächung, Risikobeherrschung).	^	
Qualitätsmanagement	 Die Eigenschaften eines Qualitätsmanagementsystems erläutern können Ansätze, Besonderheiten und Vorgehensweisen von KI- Managementsystemen benennen und erläutern können. Die Zusammenhänge zwischen Risikomanagement und Qualitätsmanagement erläutern können Funktionsweise und Zielgruppe eines Post-Market Monitoring Systems erläutern können 	x	
Transparenz und Informationspflichten	 Die Informationspflichten entlang der Wertschöpfungskette erläutern können Transparenzpflichten des EU AI Acts für Betreiber und Anbieter erläutern können 	х	
Konformität und Zertifizierung	 Die Rolle der notifizierten Stelle im Rahmen der Konformitätsbewertung erläutern können Die Unterschiede zwischen interner und externer Zertifizierung im Kontext der EU KI-Verordnung erläutern können. 	х	
Entwicklungsprozesse für Vertrauenswürdige KI-Systeme	 Die KI-Wertschöpfungskette erläutern können Den Begriff und die Stufen des KI- Lebenszyklus nennen und erläutern können 	х	
Ansätze zur systematischen Bewertung von KI- Systemen	 Beispiele für Frameworks zur systematischen Bewertung der Vertrauenswürdigkeit von KI-Systemen benennen und deren Funktionsweise erläutern können. Die Bedeutung des Anwendungskontexts bei der Bewertung von KI-Risiken erläutern können. Beispiele für Trades-offs zwischen Anforderungen an Vertrauenswürdige 	х	

vertradenswardigkeit hermen konnen.	KI aus verschiedenen Dimensionen der ANLAGE ©: »DATA SCIEI Vertrauenswürdigkeit nennen können. SPECIALIZED IN THE EU A
-------------------------------------	--

ANLAGE R: »VERTIEFUNGSBEREICHE (Level 0)«

Nachfolgend werden die Zertifizierungsprofile auf dem Level 0 (Foundation Level) aufgeführt, die sich vertiefend mit Themen aus dem Bereich Deep Learning befassen.

In den Vertiefungsbereichen können Zertifikate auf dem Level 0 (Foundation Level) erworben werden.

Durch diese Zertifikate wird Zertifikatsträgern bescheinigt, dass sie die Prüfung in dem jeweiligen Themenbereich bestanden haben. Es wird kein Titel vergeben.

RV 1 Vertiefungsbereich: Cognitive Robotics

RV 1 Vertiefungsbereich: Cognitive Robotics

RV1 1 Verweis auf andere Normen und Dokumente

■ EN ISO 17024

RV1 2 Anforderungsprofil

RV1 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil im Bereich »Cognitive Robotics« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Eine zertifikatstragende Person

- Kennt Anwendungsmöglichkeiten von ML auf Industrieroboter (z.B. Computer Vision für Objekterkennung, Reinforcement Learning für Navigation und Greifen von Objekten),
- Kennt Tool Chain zu Entwurf Lösungskonzept, Datengenerierung, Design und Training eines neuronalen Netzes, Ausführung auf Robotersteuerung,
- Kennt Transfer Learning und weiß, wann dieses sinnvoll eingesetzt werden kann,
- Kennt Vor- und Nachteile von simulierten Lernumgebungen und
- kann eine virtuelle Umgebung zur Datengenerierung konzeptionell entwerfen

Die Zertifikatstragenden im Bereich »Cognitive Robotics« weisen im Rahmen einer Multiple Choice-Prüfung nach, dass sie die unter QV 2.3 beschriebenen Kompetenzen erworben haben.

RV1 2.2Zugangsvoraussetzungen

RV1 2.2.1 Vorbildungen

Die Zertifikatstragenden im Bereich »Cognitive Robotics« brauchen keine Vorbildungen nachzuweisen.

RV1 2.2.2 Zusätzliche Ausbildungen und praktische Anforderungen

Die Zertifikatstragenden im Bereich »Cognitive Robotics« brauchen keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

RV1 2.2.3 Persönliche Voraussetzungen

Keine.

RV1 2.3 Geforderte Kompetenzen (Lernziele)

Die Grundlage für die Prüfung im Vertiefungsbereich »Cognitive Robotics« sind die folgenden aufgeführten Kompetenzen (Lernziele) und müssen durch eine schriftliche Multiple Choice-Prüfung nachgewiesen werden:

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wen den	beur- teilen
Einführung	die Motivation für die Verwendung von ML in der Robotik erläutern können.	х		
	typische Herausforderungen in der Robotik in Bezug auf ML beschreiben können.	х		
	Anwendungsbeispiele von ML in der Robotik kurz beschreiben können.	х		
Methoden- baukasten für ML und Robotik	verschiedene Sensor-Techniken bis hin zur 3D-Bildverarbeitung beschreiben können (Sensorfusion, Sensordatenströme).	х		
	grundlegende Roboterkinematiken mit deren Arbeitsraum nennen können (z.B. mobile Roboter, stationäre Roboter).	x		
Robot Vision	typische Computer Vision Aufgaben, z.B. Klassifizierung, Lokalisierung, Segmentierung nennen.	х		
	Arten von Sensoren (1D, 2D, 3D), beschreiben könne	х		
	State-of-the-art Algorithmen für die Computer Vision Aufgaben nennen.	x		
	den Unterschied zwischen Semantic Segmentation und Instance Segmentation und deren Anwendung in der Robotik erläutern.	х		

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wen den	beur- teilen
	Repräsentationen von Rotationen (z.B. Rotationsmatrix, Euler-Winkel) kennen.	х		
	die grundlegende Funktionsweise des Algorithmus Mask R-CNN beschreiben.	х		
	die grundlegende Funktionsweise des Algorithmus YOLO beschreiben.	х		
	potentielle Anwendungs- möglichkeiten der Computer Vision Algorithmen in der Robotik erläutern können darstellen.	X		
	eine Faltungsoperation und Max Pooling auf ein gegebenes Beispiel anwenden.	X		
	für spezifische Roboterapplikationen entscheiden, ob maschinelle Lernverfahren zur Objekterkennung geeignet sind.	X		
Deep Reinfocement Learning für	Den Ablaufzyklus von Reinforcement Learning skizzieren.	X		
Robotik	typische Herausforderungen im Bereich RL für die Anwendung in der Robotik erläutern.	X		
	"Reward Shaping" für eine Roboteraufgabe erläutern.	Х		
	die Begriffe Exploration und Exploitation beschreiben und unterscheiden.	X		
	die Grundidee von Hindsight Experience Replay (HER) erläutern können.	х		
	potentielle Anwendungs- möglichkeiten der aufgeführten Algorithmen darstellen.	X		

RV 1 Vertiefungsbereich: Cognitive Robotics

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wen den	beur- teilen
	bestehende Anwendungsbeispiele von RL in der Robotik erläutern.	х		
Robotic Grasp Detection	Verfahren zur Greifplanung kategorisieren können.	х		
	Vor- und Nachteile der thematisierten Verfahren nennen können.	х		
	Vor- und Nachteile der Verwendung einer Simulationsumgebung nennen können.	х		
Simulationsumge bung und Sim- to-Real Transfer	Beschreiben wann der Einsatz von Transfer Learning sinnvoll ist.	х		
	Die Idee von Domain Adaptation beschreiben können.	х		
	Die Idee von Domain Randomization beschreiben können.	х		
	Die zwei Ausprägungen von Domain Randomization inklusive Beispiele nennen können	х		
Greifpunkterken nung und - auswahl	die Motivation für einen ML basierten Ansatz zur Greifpunktbestimmung beschreiben können.	х		

RV 2 Vertiefungsbereich: Image and Video Understanding

RV 2 Vertiefungsbereich: Image and Video Understanding

RV2 1 Verweis auf andere Normen und Dokumente

■ EN ISO 17024

RV2 2 Anforderungsprofil

RV2 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil im Bereich »Image and Video Understanding« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Eine zertifikatstragende Person

- ist informiert über Lösungsansätze zu Detektions-, Klassifikations- und Segmentierungsaufgaben,
- kann ein geeignetes Vorgehen für diese Aufgaben zusammenstellen aus Feature Engineering- und Deep-Learning-Methoden,
- kennt weiterführende Deep-Learning-Methoden der Bildverarbeitung und kann sie auf eigene Problemstellungen anwenden und gegebenenfalls anpassen,
- und kennt Verfahren aus dem Feature-Engineering- und Deep-Learning-Bereich, um Informationen aus Videos zu extrahieren und kann sie geeignet kombinieren, um die Genauigkeits- und Geschwindigkeitsanforderungen einer gegebenen Aufgabe zu erfüllen.

Die Zertifikatstragenden im Bereich »Image and Video Understanding« weisen im Rahmen einer Multiple Choice-Prüfung nach, dass sie die unter QV2 2.3 beschriebenen Kompetenzen erworben haben.

RV2 2.2 Zugangsvoraussetzungen

RV2 2.2.1 Vorbildungen

Die Zertifikatstragenden im Bereich »Image and Video Understanding« brauchen keine Vorbildungen nachzuweisen.

RV2 2.2.2 Zusätzliche Ausbildungen und praktische Anforderungen

Die Zertifikatstragenden im Bereich »Image and Video Understanding« brauchen keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

RV2 2.2.3 Persönliche Voraussetzungen

Keine.

RV2 2.3Geforderte Kompetenzen (Lernziele)

Die Grundlage für die Prüfung im Vertiefungsbereich »Image and Video Understanding« sind die folgenden aufgeführten Kompetenzen (Lernziele) und müssen durch eine schriftliche Multiple Choice-Prüfung nachgewiesen werden:

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
Bilder und Videos	die Definitionen von Bildern und Videos wiedergeben können.	х		
	je ein oder mehrere gängige Bild- und Videoformate aus den Kategorien verlustbehaftete Kompressionsverfahren, verlustfreie Kompressions- verfahren, Video- Kompressionsverfahren, Video- Containerformate nennen können.	X		
	Bilder und Videos zur Verarbeitung vorbereiten können (konvertieren, in verschiedenen, für Lernverfahren geeigneten Formaten abspeichern und diese für Lernverfahren laden).	х		
Feature Engineering	Bildmerkmale aus den Kategorien statistische Bildmerkmale, formbeschreibende Merkmale, texturbeschreibende Merkmale, und Feature-Deskriptoren nennen können.	Х		
	Mindestens je ein Merkmal jeder Kategorie statistische Bildmerkmale, formbeschreibende Merkmale, texturbeschreibende Merkmale, und Feature-Deskriptoren erklären können	X		
	den Zweck von Bildmerkmalen unterscheiden können (für statistische Bildmerkmale, formbeschreibende Merkmale, texturbeschreibende Merkmale, Feature-Deskriptoren).	х		
	Bildmerkmale der genannten Kategorien extrahieren können.	Х		

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
	den generellen Aufbau der Bildverarbeitungspipeline basierend auf Bildmerkmalen beschreiben und programmieren können.	X		
	Klassifikatoren anwenden können (Naive Bayes, Random Forests, SVN).	X		
	den Zusammenhang zwischen Segmentierung und Klassifikation erläutern können.	X		
	Detektion und Segmentierung voneinander abgrenzen können.	X		
	einfache Segmentierungsaufgaben mit Feature Engineering lösen können.	Х		
	Detektionsaufgaben mit statistischen Feature- Deskriptoren lösen können.	Х		
	Klassifikationsaufgaben mit Feature-Ansatz lösen können.	Х		
	die Grenzen von Feature Engineering-Ansätzen nennen und beschreiben können (curse of dimensionality, Redundanz der features).	Х		
Validierung von Klassifikations-, Detektions- und Segmentierungsa Igorithmen	Spezielle Metriken in der Bildanalyse kennen und implementieren können, wie Dice-Score und Jaccard- Koeffizient als voxel-basierte Metriken, und volumen-basiert Metriken wie Oberflächen- Distanz und Volumetrische Überlappung.	X		
	Detektionsalgorithmen auswerten können.	Х		
Segmentierung mit CNNs	Architekturen für Segmentierung erklären können.	х		

RV 2 Vertiefungsbereich: Image and Video Understanding

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
	das Konzept des rezeptiven Feldes kennen und die Größe abschätzen können.	х		
	Fully Convolutional Networks (FCN) beschreiben, die praktische Bedeutung von FCN erläutern und ein Netzwerk in ein FCN konvertieren können.,.	х		
	das U-Net/V-Net effizient implementieren können.	Х		
	das Overlapping Tile-Konzept motivieren und erklären können.	X		
	die Segmentierung mehrerer Strukturen zugleich vergleichen und bewerten können (überlappend, nicht- überlappend, Losses für multi- class-Segmentierung).	X		
	Regularisierungsarten beschreiben und beurteilen können (Dropout, Batch Normalization, L1/L2- Normalisierung).	х		
	Aktivierungsfunktionen und Losses benennen und diese geeignet wählen können.	х		
	Segmentierungsnetzwerke konstruieren, trainieren und Trainingserfolge überwachen und beurteilen können.	х		
Detektion mit Deep Networks	die Detektion als Spezialfall von Voxel- oder Regionen- Klassifikation erläutern können.	х		
	Architekturen wie zum Beispiel Mask R-CNN und Netzwerk- Topologien (zum Beispiel YOLO- basiert) erläutern können.	х		
	vortrainierte Netze anpassen können.	х		
Klassifikation mit Deep Networks	Architekturen wie Resnet, DenseNet und Inception/Xception beschreiben können.	х		

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
	Den Umgang mit seltenen Klassen erläutern können.	х		
Explainability	Ansätze beschreiben können, um probabilistische Ergebnisse zu erhalten statt binärer Masken (Segmentierung) oder Entscheidungen (Klassifikation).	X		
	Ansätze benennen können, um die Bildeigenschaften, die für die Klassifikation entscheidend waren, zu bestimmen.	X		
	bestehende Netze mit Explainability-Ansätzen analysieren können.	X		
Weiterführende Bildbearbeitung mit tiefen Netzen	die Bedeutung der Loss- Funktion im Zusammenhang mit generativen Modellen erläutern können.	X		
	Architekturen für generative Netze kennen (z.B. Cycle GAN, Wasserstein GAN, DC-GAN)	X		
	Ein gegebenes GAN an eine gestellte Aufgabe anpassen können.	X		
	Image to Image Translation erklären können.	Х		
	Die Funktionsweise des Attention-Mechanismus' kennen	X		
	Je mindestens einen zentralen Vorteil und Nachteil von Attention-Mechanismen gegenüber CNNs benennen können	х		
	Den Unterschied zwischen Self- und Cross-Attention beschreiben können.	х		
	Die Funktion von Transformer- Encoder und Transformer- Decoder beschreiben können	X		

RV 2 Vertiefungsbereich: Image and Video Understanding

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
	Für eine praktische Aufgabe Vorteile und Nachteile des Einsatzes einer Transformer- Architektur abschätzen können	X		
	Ansätze kennen, mit denen Transformer-Modelle für den Einsatz in der Bildverarbeitung adaptiert werden	Х		
	Spezifische (unüberwachte) Trainingsmethoden für Bild- Transformer kennen	х		
Videoanalyse	die Unterschiede von Bild- und Videoverarbeitung und deren Übertragung erläutern können.	х		
	Gründe für und das Vorgehen zur Verbindung von Feature-Engineering- und Deep-Learning-Methoden beschreiben können (zum Beispiel Einhaltung von Echtzeit-Constraints, Verbindung von Expertenwissen und statistischen Modellen).	Х		
	den allgemeinen Aufbau von RNN (Recurrent Neural Networks) beschreiben können.	х		
	CNN und RNN kombinieren können (ConvLSTM-Layer).	х		
	charakteristische Sequenzen in Filmen detektieren können.	Х		

RV 3 Vertiefungsbereich: Cognitive Cyber Security

RV 2 Vertiefungsbereich: Image and Video Understanding

RV3 1 Verweis auf andere Normen und Dokumente

■ EN ISO 17024

RV3 2 Anforderungsprofil

RV3 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil im Bereich »Cognitive Cyber Security« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Eine zertifikatstragende Person

- Kennt Anwendungsgebiete von ML im Bereich Cyber Security: (Anomalie-Erkennung, Authentisierung, Natural-Language-Processing, Malware Erkennung, Adversarial Machine Learning)
- Kennt die Vorteile von ML basierten Anwendungen in diesen Bereichen gegenüber herkömmlichen Methoden
- Kann mit Datensätzen aus diesem Bereich umgehen und grundlegende ML-basierte Lösungen konzeptionieren

Die Zertifikatstragenden im Bereich » Cognitive Cyber Security« « weisen im Rahmen einer Multiple Choice-Prüfung nach, dass sie die unter QV3 2.3 beschriebenen Kompetenzen erworben haben.

RV3 2.2 Zugangsvoraussetzungen

RV3 2.2.1 Vorbildungen

Die Zertifikatstragenden im Bereich » Cognitive Cyber Security« « brauchen keine Vorbildungen nachzuweisen.

RV3 2.2.2 Zusätzliche Ausbildungen und praktische Anforderungen

Die Zertifikatstragenden im Bereich » Cognitive Cyber Security« « brauchen keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

RV3 2.2.3 Persönliche Voraussetzungen

RV3 2.3Geforderte Kompetenzen (Lernziele)

Die Grundlage für die Prüfung im Vertiefungsbereich » Cognitive Cyber Security« « sind die folgenden aufgeführten Kompetenzen (Lernziele) und müssen durch eine schriftliche Multiple Choice-Prüfung nachgewiesen werden:

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
Cybersicherheit	Anwendungsfelder von ML für die Cybersicherheit kennen: • Anomalie-Erkennung, • Authentisierung, • Natural-Language-Processing, • Malware Erkennung, • Adversarial Machine Learning. Erläutern können, wie ML in diesen Feldern die Beschränkungen bereits bestehender Methoden überwinden kann.	X		
	Einführung in typische Datensätze und Datentypen in der Cybersicherheit: Netzwerkverkehr- Mitschnitte (PCAP) Source Code Binary Code Logfiles Diese Datentypen kennen, deren grundlegende Struktur verstehen und in der Lage sein diese für das Trainieren von ML Algorithmen entsprechend aufzubereiten können.	X		
	Das offensive Potential von Machine Learning kennen:	X		
Anomalie- Erkennung	Verstehen der grundsätzlichen Funktionsweise eines Intrusion Detection Sytems.	Х		
	Wichtige ML Algorithmen für Anomalieerkennung kennen und anwenden können: Density Estimation, PCA One-Class SVM	X		

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
Authentisierung	 Die wichtigsten Konzepte und Methoden der ML- basierten, kontinuierlichen Authentisierung nennen können: Verhaltensanalyse für Shell/Bash, Modellierung der Benutzung der Maus/Tastatur, Touch Dynamics 	X		
	Kontinuierliche Authentisierung mit ML anhand eines Beispiels umsetzten können: • Benutzeridentifikatio n aus Keystroke Dynamics		х	
Natural Language Processing	Zentrale Anwendungsgebiete für NLP im Bereich Cybersicherheit kennen und beschreiben können: • Spamfilter mittels Naive Bayes • Quellcode Analyse mittels tf-idf und multi-class SVM	X		
	Mittels NLP sicherheitsrelevante Dokumente analysieren können: • Einen ML-basierten Spamfilter entwerfen können		х	
	Cryptoanalyse mit Machine Learning: • Mittels Hidden Markov Modellen klassische Kryptoalgorithmen angreifen	Х		
Malware- erkennung	Grundlagen des Deep Learning für Malware Klassifikation verstehen: • Feature Extraction aus Malware Binaries • Malware Klassifikation	Х		

RV 2 Vertiefungsbereich: Image and Video Understanding

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
Aversarial Machine Learning	Schwachstellen von ML- Methoden beschreiben können: • Grundlagen des Adversarial ML verstehen, insb. Causative und Evasive Attacks.	X		
	Taxonomie je einer der folgenden Angriffe beschreiben können: • Label Poisoning, • Boundary Attack auf Neuronale Netzwerke	х		
	Pentesting Angriffe auf ML Modelle durchführen zu können: Adversarial Attacks auf Bilderkennung anhand eines Opensource Tools wie z.B. Cleverhans, DeepFool	X		

RV 4 Vertiefungsbereich: Skalierbare Lernsysteme

RV 2 Vertiefungsbereich: Image and Video Understanding

RV4 1 Verweis auf andere Normen und Dokumente

■ EN ISO 17024

RV4 2 Anforderungsprofil

RV4 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil im Bereich »Skalierbare Lernsysteme« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Eine zertifikatstragende Person

- Kennt die Grundlagen paralleler Algorithmen und deren Komplexität
- Kennt die Grundlagen Verteilter Rechnersysteme
- Kann gängige Parallelisierungsansätze auf Machine Learning Verfahren anwenden
- Kennt aktuelle Softwareumgebungen für Verteilte Big Data und High Performance Computing (HPC) Anwendungen
- Kann Anwendungen aktueller Machine Learning Algorithmen in einer verteilten Big Data und HPC Softwareumgebung umsetzen

Die Zertifikatstragenden im Bereich »Skalierbare Lernsysteme « weisen im Rahmen einer Multiple Choice-Prüfung nach, dass sie die unter QV4 2.3 beschriebenen Kompetenzen erworben haben.

RV4 2.2 Zugangsvoraussetzungen

RV4 2.2.1 Vorbildungen

Die Zertifikatstragenden im Bereich »Skalierbare Lernsysteme« brauchen keine Vorbildungen nachzuweisen.

RV4 2.2.2 Zusätzliche Ausbildungen und praktische Anforderungen

Die Zertifikatstragenden im Bereich »Skalierbare Lernsysteme« brauchen keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

RV4 2.2.3 Persönliche Voraussetzungen

RV4 2.3Geforderte Kompetenzen (Lernziele)

Die Grundlage für die Prüfung im Vertiefungsbereich »Skalierbare Lernsysteme« sind die folgenden aufgeführten Kompetenzen (Lernziele) und müssen durch eine schriftliche Multiple Choice-Prüfung nachgewiesen werden:

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
Komplexität und Laufzeit-analyse	die Komplexität gängiger ML Algorithmen erklären können.	Х		
von Lern- algorithmen	die Grundlagen der Laufzeitanalyse erläutern können.	X		
	die Grundlagen gängiger numerischer Optimierungsverfahren in ML beschreiben können.	Х		
	die theoretischen Grundlagen paralleler Algorithmik einordnen können.	X		
	Map Reduce in ML anwenden können.	Х		
	die Vorteile der Parallelisierung von numerischen Optimierungsverfahren erläutern können.	X		
Implemen- tierung von Lernalgorithmen auf GPUs, Mehrkern- und	technische Grundlagen gängiger Hardwarebeschleuniger benennen können (GPUs, Xeon Phi, TPU).	X		
verteilten Systemen	gängige hardwarenahe Softwarebibliotheken für ML Algorithmen (cuDNN, MKL) anwenden können.	X		
Hardware- Architektur für ML-Systeme	Performance-Anforderungen von ML-Systemen beschreiben können (Rechenoperationen, I/O, Storage).	X		
	gängige ML System- Architekturen erläutern können.	X		
High Performance Computing für maschinelles	die Grundlagen von HPC- Systemen darstellen können (Netzwerk, IO/Storage, Batch- Verarbeitung).	X		
Lernen	Batch-Systeme nutzen können.	X		

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
	verteilte Parallelisierung einsetzen können (mit dem Message Passing Interface (MPI), Global Address Space Programm Interface (GPI)).	X		
Implementierung von ML- Systemen in der Cloud / Big Data	die Architektur von Cloud Services am Beispiel AWS erläutern können.	Х		
	die Grundlagen von Hadoop und Spark erklären können.	Х		
	ML Bibliotheken in Hadoop und Spark einsetzen können (Mahout, MLlib).	Х		

RV 2 Vertiefungsbereich: Image and Video Understanding

RV 5 Vertiefungsbereich: Textmining & Large Language Models

RV5 1 Verweis auf andere Normen und Dokumente

■ EN ISO 17024

RV5 2 Anforderungsprofil

RV5 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil im Bereich »Textmining & Large Language Models« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Eine zertifikatstragende Person

- Ist informiert über die Grundlagen von Textverstehen im Kontext von ML.
- weiß, wie Daten in dem Kontext vorverarbeitet werden müssen und kann selbst Klassifikatoren zur Textverarbeitung entwerfen und umsetzen.
- kennt sich mit der Semantischen Ähnlichkeit aus
- kennt die Architektur von Transformer, BERT und GPT und kann sie für Aufgaben der Informationsextraktion einsetzen
- kennt die Konstruktionsprinzipien und Anwendungsbereiche von Textmining und Large Language Models

Die Zertifikatstragenden im Bereich »Textmining & Large Language Models « weisen im Rahmen einer Multiple Choice-Prüfung nach, dass sie die unter QV5 2.3 beschriebenen Kompetenzen erworben haben.

RV5 2.2 Zugangsvoraussetzungen

RV5 2.2.1 Vorbildungen

Die Zertifikatstragenden im Bereich »Textmining & Large Language Models « brauchen keine Vorbildungen nachzuweisen.

RV5 2.2.2 Zusätzliche Ausbildungen und praktische Anforderungen

Die Zertifikatstragenden im Bereich »Textmining & Large Language Models « brauchen keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

RV5 2.2.3 Persönliche Voraussetzungen

Die Grundlage für die Prüfung im Vertiefungsbereich »Textmining & Large Language Models « sind die folgenden aufgeführten Kompetenzen (Lernziele) und müssen durch eine schriftliche Multiple Choice-Prüfung nachgewiesen werden:

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
Grundlagen des Textmining	die Aufgabenstellung des Textverstehens erläutern können.	х		
	Die Aufgaben der Verarbeitung natürlicher Sprache beschreiben können.	Х		
	die möglichen Vorteile des maschinellen Lernens für das Textverstehen erklären können.	Х		
	Phasen der Textanalyse benennen können	Х		
	Anwendung von Textmining benennen können	х		
	Die Grundlagen des Maschinellen Lernens und des Deep Learning erklären können.	Х		
	die wichtigsten Arten von Deep Learning Modellen benennen können	Х		
Die Bedeutung von Wörtern	die Grundlagen der semantischen Ähnlichkeit erklären können.	Х		
	Grundlagen von Embedding- verfahren wie Word2Vec verstehen	Х		
	Die Notwenddigkeit kontext- sensitiver Einbettungen erklären können	Х		
	Die Notwendigkeit von Token und deren Berechnungs- verfahren erklären können.	Х		
	Die Grundlagen und die Berechnung der Self- Attention kennen	Х		
	Die wichtigsten Merkmale des Trainingsverfahrens von BERT kennen.	Х		
	Die wichtigsten Anwendungen von BERT kennen.	Х		

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
Textklassifikation	mögliche Aufgaben- stellungen der Klassifizierung kennen	X	Х	
	Repräsentation und Vorverarbeitung textueller Daten für Klassifikations- verfahren verstehen.	X		
	die wichtigsten Klassifikationsmodelle für Text erläutern können.	X		
	Konzepte von Ensemble- Methoden verstehen.	Х		
	Die Nutzung von BERT für Klassifikationsaufgaben erklären können. Das Konzept des Transfer-Lernens mit Pre- Training und Fine-tuning erläutern können	Х		
Sprachmodelle	Aufgabe und grundlegende Eigenschaften von Sprachmodellen erklären können	X		
	Konstruktionsmerkmale und Eigenschaften von rekurrenten neuronalen Netzen kennen	X		
	Die Grundlagen des GPT- Modells uns seine Architektur beschreiben können	X		
	Das Konzept des few-shot learning beschreiben können	X		
	Der Zusammenhang zwischen Anzahl der Parameter und Umfang der Trainingsdaten kennen	X		
	Die Leistungsfähigkeit von Sprachmodellen und deren Messung kennen	Х		
Transformation von Wortfolgen / Sequenzen	Architektur und Training von RNN für die Übersetzung erläutern können	Х		
	Die Architektur und das Training des Transformers für die Übersetzung erläutern können	X		
	Konzepte zur Messung der Übersetzungsqualität (z.B. BLEU) kennen	Х		

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
Applications of Large Language Models	Methoden zur Verbesserung von GPT-Modellen (Chain-of- Thought, Instruction Tuning, Reinforcement Learning,) erläutern können	X		
	Die Aufgabenbeschreibung und Lösungsstrategien für wichtige Textanalyse- anwendungen kennen (Zusammenfassung, Coreferenzanalyse,)	х		
Dialoge und Erzeugung anderer Medien	Das Konzept der Multilingualen Modelle erläutern können	Х		
aus Text	Die Verwendung von Retrieval für Sprachmodelle erklären können	Х		

RV 2 Vertiefungsbereich: Image and Video Understanding

RV 6 Vertiefungsbereich: Time Series Analysis

RV6 1 Verweis auf andere Normen und Dokumente

■ EN ISO 17024

RV6 2 Anforderungsprofil

RV6 2.1 Bestimmung des Anforderungsprofils

Das Anforderungsprofil im Bereich »Time Series Analysis« ergibt sich aus der Charakteristik und Beschreibung seines Tätigkeitsfeldes.

Eine zertifikatstragende Person

- Kennt die Besonderheiten von Zeitreihen
- Weiß, was State Space ist
- Kennt sich mit Recurrent Neural Networks aus
- Kann Modelle zum Forecasting anwenden und die Grenzen von Forecasting erläutern
- kann klassische Data Mining Verfahren auf Zeitreihen anwenden

Die Zertifikatstragenden im Bereich »Time Series Analysis« weisen im Rahmen einer Multiple Choice-Prüfung nach, dass sie die unter QV6 2.3 beschriebenen Kompetenzen erworben haben.

RV6 2.2 Zugangsvoraussetzungen

RV6 2.2.1 Vorbildungen

Die Zertifikatstragenden im Bereich »Time Series Analysis« brauchen keine Vorbildungen nachzuweisen.

RV6 2.2.2 Zusätzliche Ausbildungen und praktische Anforderungen

Die Zertifikatstragenden im Bereich »Time Series Analysis« brauchen keine zusätzlichen Ausbildungen, Erfahrungen und Berechtigungen nachweisen.

RV6 2.2.3 Persönliche Voraussetzungen

Die Grundlage für die Prüfung im Vertiefungsbereich »Time Series Analysis« sind die folgenden aufgeführten Kompetenzen (Lernziele) und müssen durch eine schriftliche Multiple Choice-Prüfung nachgewiesen werden:

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
Grundlagen Zeitreihenanalyse	Grundkonzept von Zeitreihen beschreiben können.	Х		
	Zeitreihendaten von anderen Daten abgrenzen können.	Х		
	Aufgaben und Besonderheiten der Zeitreihenanalyse benennen können.	X		
	Den Umfang von Zeitreihen und ihrer Analyse hinsichtlich des Bezugs zu anderen Datentypen nennen und beschreiben können.	х		
	Den Unterschied zwischen univariat und multivariat benennen und erläutern können	х		
	Daten als Grundlage für sinnvolle Zeitreihenanalyse erkennen können.	x		
Descriptive und klassische Methoden	Aggregationsverfahren für Zeitreihen nennen und erläutern können	X		
	Die Funktionsweise von Dynamic Time Warping als Distanzmaß erläutern können	X		
	Anwendungsgebiete und Eigenschaften der Fourier- Transformation für Zeitreihenanalyse nennen und beschreiben können	X		
	Grundsätzliche Werkzeuge zur Untersuchung von Zeitreihen nennen und zuordnen können	X		
Zeitreihenklassifi kation	Die Funktionsweise von Zeitreihenbäumen zur Zeitreihenklassifikation erläutern können	X		
	Die Funktionsweise von Zeitreihenbäumen zur Zeitreihenklassifikation erläutern können	х		

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
	Die Funktionsweise von BOP als Beispiel für wörterbuchbasierte Verfahren zur Zeitreihenklassifikation erläutern können	Х		
	Übergreifende Eigenschaften von Zeitreihenklassifikation abgrenzen können	Х		
Autoregressive Integrated Moving Average	Stationarität als wichtige Eigenschaft von Zeitreihen benennen können.	Х		
(ARMA)	Voraussetzungen zur Anwendung von ARMA beschreiben können	X		
	Saisonale Dekomposition erläutern können.	х		
	Die Autokorrelation (ACF) von Partieller Autokorrelation (PACF) abgrenzen können	Х		
	Die Box-Jenins-Methode und ihre Limitationen erläutern können	Х		
Multivariate Zeitreihen	Vor- und Nachteile des Ansatzes des Fakens klassischer Daten für die multivariate Zeitreihenanalyse erläutern können	x		
	Vor- und Nachteile des Ansatzes "Ensemble over Each Dimension" für die multivariate Zeitreihenanalyse erläutern können	х		
	Vor- und Nachteile des Ansatzes des Adaptierens von Modellen und Algorithmen für die multivariate Zeitreihenanalyse kennen.	х		
Anomalie Erkennung	Anomalie Erkennung als hybrides KI-Anwendungsfeld beschreiben können	Х		
	Verschiedene Arten von Zeitreihenanomalien auseinanderhalten können	Х		
	Die Funktionsweise von Isolation Forests erläutern können.	Х		
	Die Funktionsweise von Auto Encoder erläutern können.	х		

Wissensgebiet	Kompetenzen/Lernziele	ken- nen	an- wenden	beur- teilen
	Grundsätzliche Besonderheiten zeitreihenbasierter Anomalie Erkennung erläutern können	х		
	Vorkommen von Anomalien im Kontext anderer Daten erkennen und verargumentieren können	X		
Recurrent Neural Networks (RNN) und Lang Short- Term Memories (LSTM)	Verschiedene LSTM-Varianten nennen und voneinander abgrenzen können	Х		
	Die Funktionsweise von LSTM- Zellen erläutern können.	X		
	Das Training rekurrenter Neural Networks erläutern können	х		
	Alternativen für RNNs und ihre Unterschiede benennen können	х		
	RNNs und ihre Unterschiede zu normalen NN erläutern können	х		
	LSTMs hinsichtlich ihrer Vorteile, insb. Des Behandelns des verschwindenden Gradienten erläutern können	х		
	LSTMs und ihre Bestandteile erläutern können.	х		
Advanced Neural Networks	Transformer im Vergleich zu LSTMs trennen können	Х		
	Die Transformer Architektur verstehen	Х		
	CNN-Anwendungen für die Zeitreihenanalyse benennen können	х		

RV 2 Vertiefungsbereich: Image and Video Understanding